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ABSTRACT

BAYESIAN NONPARAMETRIC MODELS FOR CAUSAL INFERENCE AND CLUSTERING

UNDER DIRICHLET PROCESS PRIORS

Arman Oganisian

Jason A. Roy

Nandita Mitra

This body of work develops new Bayesian nonparametric (BNP) models for estimating causal ef-

fects with observational data. Though broadly applicable, it is motivated by statistical complexities

that frequently arise in health economics. Using potential outcomes, we formulate tailored causal

estimands and determine the conditions under which they are identifiable from observed data.

Once identified, flexible estimation follows from constructing models with high-dimensional sets of

parameters that are allowed to grow with the sample size. We employ the Dirichlet Process (DP),

and related stochastic processes, as priors over these high-dimensional spaces to do posterior

causal inference. First, motivated by complexities in medical cost distributions, we construct a gen-

erative two-part model for zero-inflated outcomes under a DP prior. This model is able to capture

structural zeros, skewness, and multimodality. We develop a Bayesian g-computation procedure

for causal estimation and use the induced partitioning of the DP to detect latent clusters of patients

with similar data distributions. Second, we extend this work to cost-effectiveness analyses, which

requires jointly modeling a bivariate outcome under right-censoring. Posterior causal inference is

done using a BNP joint model under the Enriched DP and Gamma Process priors. Finally, we

tackle the difficulties of estimating causal effects in multiple sparse subgroups. Using an improper

Hierarchical DP, we construct a new “hierarchical Bayesian bootstrap” prior that partially pools con-

founder information across subgroups when performing g-computation. This allows for potential

efficiency gains without imposing strong parametric assumptions on the confounder distributions.

A key contribution throughout is the construction of Markov Chain Monte Carlo (MCMC) algorithms

for efficient posterior sampling.
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CHAPTER 1

INTRODUCTION

This dissertation develops new Bayesian nonparametric (BNP) models for estimating causal effects

with observational data. Bayesian approaches for causal inference date back to early work by

Rubin, 1978 who framed the task as a type of missing data problem in a finite sample. Specifically,

with a binary treatment we only observe one of two potential outcomes for each subject. From a

Bayesian perspective, each subject’s counterfactual is simply treated as an unknown/missing value

which can be drawn from its posterior distribution under certain assumptions. This posterior then

induces a posterior over functionals of the potential outcomes, such as sample average treatment

effects. This missing-data perspective has been reviewed recently by Ding and Li, 2018.

Over the last few decades, the desire for more robust estimation of population-level causal effects

has led to development of BNP methods. BNP models involve a high-dimensional set of parame-

ters that is typically allowed to grow with the sample size - affording them a high degree of flexibility.

Special priors over these high-dimensional spaces are used to define a suitably regularized pos-

terior over the model space. Many well-known models such as Bayesian additive regression trees

(Chipman, George, and McCulloch, 2010) and Gaussian processes (Rasmussen and Williams,

2005), for instance, belong to this class. An introduction and review of these methods in causal

inference is provided by Oganisian and Roy, 2021.

In our view, BNP methods add value over classical nonparametric/machine learning methods in

several ways. First, while most nonparametric methods from regression trees to kernel regression

involve regularization, it is often done through ad-hoc penalties on the objective functions. In BNP

methods, regularization is done in a more principled way via prior measures and uncertainty in

the regularization flows through to the posterior automatically. Second, as opposed to classical

machine learning methods where uncertainty estimation tends to be more complicated relative to

point-estimation, BNP methods can do both quite easily since the output is a full posterior distribu-

tion. Summarizing the center and dispersion of the posterior in a number of ways is relatively easy

once we have the posterior. Third, in causal inference targets of inference tend to be functionals

(often integrals) over relevant models. An appealing property of fully Bayesian inference is that a

1
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posterior over the model induces a posterior over these functionals and required integrals over the

model can be performed with relative ease via Monte Carlo.

Here, we will primarily be developing Dirichlet Process (DP) mixtures which, at a high level, are

BNP approaches that model outcome distributions as a data-adaptive mixtures of simpler distri-

butions. At a low-level, the DP is a stochastic process that generates random discrete probability

distributions. Due to conjugacy and overall tractability, it has become a canonical nonparametric

prior over unknown probability distributions. It is a “nonparametric” prior in the sense that the distri-

butions generated by the DP do not belong to any particular parametric family. DP mixtures follow

from placing a DP prior over the mixing distribution of a mixture model. Over the years, the DP

has been generalized and extended in several ways. For instance, the enriched DP (EDP) and

the hierarchical DP (HDP) have unique properties which are useful for addressing important causal

modeling challenges. Though broadly applicable to a wide range of applications, our BNP modeling

solutions are particularly motivated by challenges in health economics.

In Chapter 2, we develop a generative BNP model equipped to handle outcomes that exhibit struc-

tural zeros, multi-modalities, and skewed tails. Such outcomes are quite common in analyses of

medical costs in economics as some subjects may never accrue cost while others may accrue very

high costs. However, applications include ecology (modeling rainfall: there can be many days/areas

with no rain), actuarial sciences (modeling insurance payouts: some plans never paying out dur-

ing a coverage period), and biomedical studies (modeling blood concentration of some biomarker:

concentrations below limit of detection will return zero). Our approach specifies a joint model for the

outcome, the propensity score, and the confounders with DP prior over the unknown distribution of

the subject-specific parameters governing this joint. The DP probabilistically partitions the complex

joint into more homogenous subregions/clusters and assigns each its own parameter vector. Im-

portantly, the number of clusters that form is not pre-specified and is bounded only by the sample

size. Thus, this model is capable of capturing complexities that models with a single set of finite-

dimensional parameters cannot. We show how posterior output from this model can be (1) used

in a g-computation algorithm for computing causal effects, (2) conduct posterior predictive checks

around important causal assumptions, and (3) infer both soft and hard latent cluster assignments

for subjects who share similar joint data distributions. An Markov chain Monte Carlo (MCMC) algo-

rithm for posterior inference via auxiliary variables is outlined and simulations assessing frequentist

2
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properties are performed. We apply the model to analyze medical costs accrued by patients di-

agnosed with endometrial cancer and subsequently assigned to post-operative chemotherapy and

radiation therapy.

In Chapter 3 we extend the work of Chapter 2 to the setting of cost-effectiveness analyses (CEAs).

CEAs are employed in health policy and economics to evaluate whether the benefits associated

with a particular treatment outweigh the medical costs - with results often used to inform efficient

resource allocation and production. In cancer studies, the most common efficacy measure is in-

creased in survival time. This makes CEAs statistically challenging as we must now deal with

modeling a bivariate outcome (cost and survival time) jointly under right-censoring. In this chapter

we first define causal contrasts in terms of expected potential monetary value accrued under each

treatment. We then define a causal net monetary benefit is the difference in the expected poten-

tial monetary value of two treatments and identify it under a set of causal assumptions. We then

construct a BNP model for cost-efficacy based on an enriched DP (EDP) and Gamma Process

priors and use it in a posterior g-computation procedure to obtain draws from the posterior of the

causal net monetary benefit estimand. Simulations are performed, posterior MCMC computation

is outlined, and the model is applied to a CEA of radiation versus chemotherapy for endometrial

cancer.

Finally, in Chapter 4, we tackle the important challenge of heterogenous treatment effect (HTE)

estimation. HTEs are causal effects within subpopulations defined by the strata of some variable

of interest (e.g. within education levels, income brackets, phenotypes, genotypes, etc.). The pri-

mary interest lies in how these causal effects vary (display “heterogeneity”) across strata. This of-

ten involves integrating stratum-specific outcome regressions over the stratum-specific confounder

distributions. While some Bayesian pooling can be done across strata when estimating the re-

gression models, usually the confounder distributions are estimated flexibly - but independently -

via a Bayesian bootstrap (Rubin, 1981) or the empirical distribution. This, however, provides poor

performance when strata are too sparse to yield such flexible estimates of the confounder distri-

butions. We formate a hierarchical Bayesian bootstrap (HBB) prior using hierarchical DPs. The

resulting posterior allows for borrowing of confounder information across strata, with more borrow-

ing in sparse strata and less borrowing for populous strata. A conjugate MCMC update procedure

is outlined and simulations are performed to assess frequentist operating characteristics. We show
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that our approach limits to the empirical distribution and make connections to the smoothed Boot-

strap. We apply the model to estimate the adverse event rates of proton versus photon therapy

across cancer type strata.

In Chapter 5, we end with a brief discussion of our work within the broader context of causal

inference and and BNP modeling. Namely, we discuss the role Bayesian nonparametrics occupies

between classical statistical procedures that emphasize uncertainty estimation and more modern

machine learning methods that emphasize flexible point estimation. We discuss a resurgence of

BNP models in the computer science literature under the name of “probabilistic machine learning”

and give a few reasons for optimism about the role of BNP methods in causal inference.
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CHAPTER 2

BAYESIAN NONPARAMETRIC MODEL FOR ZERO-INFLATED OUTCOMES:

PREDICTION, CLUSTERING, AND CAUSAL INFERENCE

2.1. Overview and Motivation

Researchers across many fields are often interested in outcome prediction, clustering analysis, and

causal inference. For example, researchers in personalized medicine are broadly concerned with

forming out-of-sample outcome predictions given a subject’s covariates. Health economists are of-

ten interested in subgroup identification for resource allocation purposes and may turn to algorithms

such as K-means. Policy researchers, on the other hand, focus on causality - estimating the av-

erage difference in outcomes that would have occurred under hypothetical policy interventions. All

of these tasks become challenging in the presence of zero-inflated outcomes, multi-modality, and

extreme skewness. Structural zeros often need to be modeled: if causal treatment effect estimation

is the goal, failing to capture a difference in prevalence of zeros between treatment groups may

bias effect estimates. For prediction purposes, it is necessary to capture outcomes at the skewed

high-end of the distribution as well as predicting the structural zeros at the low-end. Failing to do so

would tarnish predictions at both tails. For clustering analyses, having to pre-specify the number of

clusters - typically an unknown quantity - poses a significant challenge.

In this paper, we develop a Bayesian nonparametric (BNP) generative model that simultaneously

predicts structural zeros as a function of covariates, captures skewness in both the outcome and

continuous covariates, and induces a grouping of subjects into clusters with similar joint data dis-

tributions. The result is a flexible, multi-purpose model that is broadly applicable to the tasks de-

scribed above. We demonstrate the ability of our model to produce robust causal effect estimates

via standardization - a common method for computing marginal causal contrasts while adjusting

for measured confounders. This fully Bayesian approach allows uncertainty to propagate through

to the causal estimates, allowing point and interval estimation of various causal contrasts such as

mean differences and quantile causal effects. Moreover, posterior predictive checks around posi-

tivity - a key causal identification assumption - can be readily conducted using the model output.
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In particular, we propose a Dirichlet Process (DP) mixture of zero-inflated regressions. Each zero-

inflated regression is a two-part model: a model for the probability of the outcome being zero and

a regression for the continuous, non-zero outcomes. DP mixtures (Ferguson, 1973) are a class

of BNP models that partition a complex joint distribution of the outcome and covariates into more

homogeneous clusters. In our case, the cluster-specific conditional means are modeled using

a zero-inflated regression. Unlike finite mixtures, DP mixtures assume there are infinitely many

clusters in the population - removing the need to specify the number of clusters in advance. As

many clusters are introduced as are needed to accommodate the complexity of the data. If the

data are not complex and can be adequately fit with a parametric model, new clusters form less

often. In this sense, our model is data adaptive - growing in proportion to the complexity of the data.

The flexibility and relative ease of constructing point and interval estimates for various types of con-

trasts are perhaps some of the reasons that BNP methods have been growing in popularity within

the causal inference literature. For example, Bayesian additive regression trees (BART) (Chipman,

George, and McCulloch, 2010; Hill, 2011) have been used to estimate causal treatment effects. De-

pendent Dirichlet process methods have been developed for estimating marginal structural models

(Roy, Lum, and Daniels, 2017) and dynamic treatment regime models (Xu et al., 2016). Dirichlet

process mixture approaches for mediation analysis (Kim et al., 2017) and Enriched Dirichlet pro-

cess (Wade et al., 2014) mixture approaches to standardization have also been developed (Roy et

al., 2018). However, these methods do not address the complications of zero-inflation discussed.

We advance existing methodology by developing a BNP standardization approach that accounts

for zero-inflation.

Several factors distinguish our approach from the existing zero-inflated models outside of the causal

inference literature. As opposed to the parametric Bayesian approach of Ghosh, Mukhopadhyay,

and Lu, 2006, our method is non-parametric and, therefore, better suited for complex data. Barcella

et al., 2016 develop a DP mixture of poisson regressions. Though this provides a flexible fit to count

data, it is inappropriate for semi-continuous data. Linero, Sinha, and Lipsitz, 2018 develop a semi-

parametric Bayesian model for semi-continuous outcomes. They use a two-part model - a probit

model for the probability of a zero and a parametric density for non-zero outcomes. The mean func-

tions of both models are jointly estimated using a BART-based model. In contrast, our model is fully

nonparametric, DP-based as opposed to BART-based, and generative as opposed to conditional.
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That is, our model estimates the full joint data distribution rather than solely a conditional outcome

distribution. The strength of DP-based procedures over BART-based procedures is that the former

induces clustering - allowing us to capture multi-modalities. Using generative models as opposed

to conditional models provides a framework for flexibly imputing missing data, as was demonstrated

by Roy et al., 2018.

Though broadly applicable, we motivate our approach throughout the paper by the analysis of med-

ical cost outcomes - an important use case of our method. Zero-inflation is the norm in cost data

as patients may tend to have zero costs through mechanisms that depend on measured covariates

and the assigned treatment. Medical costs also tend to be skewed by especially high-cost patients.

Moreover, the joint distribution tends to be multi-modal with groups of patients that exhibit differ-

ent cost-covariate relationships. Legislators and regulators often make use of economic analyses

comparing costs associated with proposed policy interventions. These comparisons are causal in

nature and require robust statistical modeling while adjusting for confounders.

2.2. Dirichlet Process Mixture of Zero-Inflated Regressions

2.2.1. A Generative Model

Consider observing data D = (Di)i=1:n = (Yi, Ai, Li)i=1:n from n independently sampled subjects.

The q × 1 covariate vector, Li, contains both categorical and continuous covariates measured pre-

treatment. The scalar Ai ∈ {0, 1} denotes binary treatment assignment. The scalar outcome is Yi -

whose empirical distribution may exhibit excess zeros, skewness, and multimodality. We first define

covariate vectors for subject i as xi = (1, Ai, Li)
′ and mi = (1, Li)

′. We specify a generative model

- that is, a model for the full joint p(Di | ωi) = p(Yi | Ai, Li, ωi)p(Ai | Li, ωi)p(Li | ωi). Hierarchically

this is given by,

Yi | Ai, Li, βi, γi, φi ∼ π(x′iγi)δ0(yi) +
(
1− π(x′iγi)

)
·N(yi | x′iβi, φi)

Ai | Li, ηi ∼ Ber
(

expit(m′iηi)
)

Li | θi ∼ p(li | θi)

ωi | G ∼ G

G | α,G0 ∼ DP (αG0)

(2.1)
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Above, we define ωi = (βi, φi, γi, ηi, θi) for compactness. The conditional distribution of the out-

come, Yi, is modeled as a two-part mixture of a point-mass at 0, δ0(yi) = I(yi = 0), and a Gaussian

distribution with mean x′iβi and variance φi. This allows for a positive probability of the outcome be-

ing zero, P (Yi = 0) = π(x′iγi) = expit(x′iγi). This probability is modeled as a function of treatment

and confounders using a logistic regression with a (q + 2)× 1 parameter vector γi. Separately, the

conditional mean of non-zero outcomes is modeled using a regression with a (q+ 2)× 1 parameter

vector βi. Though we use logit links to model π(x′iγi) and P (Ai = 1 | Li, ηi), other links, such as

the probit, could be used as well. In anticipation of subsequent application to causal estimation,

we model treatment probability (i.e., the propensity score) as a function of confounders, Li, using

a logistic regression with a (q + 1) × 1 parameter vector ηi. Finally, a joint distribution over the

confounders, p(li|θi), is specified and governed by a vector of parameters θi. Since specification is

application-specific, we leave this distribution in general terms.

We assume subject-specific parameters are drawn from some distribution G. We place a DP prior

with base distribution G0 and concentration parameter α on G - denoted as G ∼ DP (αG0). The

DP is a “distribution over distributions” Ferguson, 1973 and draws from a DP are discrete - implying

a positive probability of ties among the subject-specific parameters. In other words, the DP prior

induces a clustering of patients who are more homogeneous in terms of the parameters that govern

the joint distribution of their data - including the conditional outcome distribution, structural zero dis-

tribution, propensity score distribution, and covariate distribution. The DP model allows the number

of clusters and, therefore, parameters to grow with the sample size - making this a nonparametric

model despite the seemingly rigid assumptions in Equation 2.1 (Hannah, Blei, and Powell, 2011).

The model is data-adaptive in the sense that more clusters are introduced to capture data complex-

ities (e.g. non-linear and non-additive covariate effects, multimodalities, skewness, etc). However,

if the data are simple enough to be explained by a single cluster/set of parameters, then the model

shrinks to a parametric one with linear, additive covariate effects given in Equation 2.1 (with ωi

being equal to some common ω∗, ∀i).

This model has several desirable properties when it comes to complex data such as cost out-

comes, which we use as the motivating example throughout the paper. The clustering accounts

for multi-modality in cost distributions. Structural zeros are modeled as a function of treatment

and confounders. For causal inference, this model admits a flexible predictive distribution which,
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as we will see, can be incorporated into a standardization procedure. Finally, explicit modeling of

treatment assignment allows us to conduct posterior predictive checks assessing the validity of the

positivity assumption. We note that in application areas where outcomes are non-negative and ob-

served data are close to zero, a local Gaussian distribution that ignores the non-negative nature of

the outcome is undesirable. In these instances, we can proceed with the model as presented after

log-transforming non-zero values - essentially assuming a log-Normal distribution for these values.

Appendix A.6 provides more details along with a proof-of-concept simulation.

2.2.2. Posterior Sampling and Hyperparameters

Using the Pólya Urn (Blackwell and MacQueen, 1973) representation of the DP, it can be shown

that the conditional posterior of ωi is given by (Muller et al., 2015),

p(ωi|ω1:(i−1), D) ∝ 1

α+ i− 1

[
αp(Di|ωi)G0(ωi) +

∑
j<i

p(Di|ωj)δωj (ωi)
]

(2.2)

where Di = (Yi, Ai, Li) is the data vector for the ith subject. The posterior clustering of pa-

tients is evident in Equation 2.2. Subject i’s parameter, ωi, can equal one of the previously

drawn parameters, ωj , with probability proportional to the subject’s likelihood evaluation under ωj ,∑
j<i p(Di|ωj) · δωj (ωi). Or, with probability proportional to αp(Di|ωi), ωi can be a new, previously

unseen parameter drawn from the prior G0(ωi).

If subject i is quite unique so that its likelihood evaluation is low under the i−1 existing parameters,

then it is relatively more likely for this subject to be assigned its own set of parameters from the

prior. Finally, note that as n gets large and i approaches n, the prior probability α/(α+ i− 1) of the

ith subject being assigned to a new cluster goes to zero. This property helps prevent overfitting.

The conditional posterior in Equation 2.2 forms the basis of a Metropolis-in-Gibbs sampler we use

to sample ω1:n from the full posterior, p(ω1:n|D) = p(ω1|D)
∏n
i=2 p(ωi|ω1:(i−1), D). The sampler

proceeds in the spirit of Neal’s Algorithm 8 (Neal, 2000) by introducing latent cluster membership

indicators, c1:n = (c1, c2, . . . , cn)′, for the subjects. We initialize the algorithm by partitioning subjects

to one of K initial clusters. Each iteration t, with K(t) occupied clusters indexed by k, has two

steps. First, conditional on c
(t)
1:n, we draw from the posterior of each model parameter based on

the likelihood contributions of all subjects with c
(t)
i = k. Conditional on these updated parameter,
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ω
(t+1)
1:n , we update each assignment indicator

c
(t+1)
i |c(t)1:(i−1) ∼ Cat

( 1

α+ i− 1
p(Di|ω(t+1)

1 ), . . . ,
1

α+ i− 1
p(Di|ω(t+1)

i−1 ),
α

α+ i− 1
p(Di|ω(t+1)

0 )
)

Above, Cat(·) denotes the categorical distribution and ω(t+1)
0 ∼ G0 is a draw from the prior taken at

each iteration. Notice that in each iteration subject i has a α
α+i−1p(Di|ω(t+1)

0 ) probability of being

assigned to a new cluster.

The two hyperparameters of the model in Equation 2.1 are the choice of base distribution, G0, and

the concentration parameters α. A requirement for the base distribution is that it be over the space

of the parameters ωi = (βi, φi, γi, ηi, θi). Prior independence is often assumed so that G0 can be

constructed as the product over parameter-specific priors. Conjugate priors for each parameter

may be used, if possible, to simplify MCMC computation. The concentration parameter α governs

how frequently new clusters appear in an MCMC run. It is often described as a prior sample size

for a new cluster. Following previous analyses (Roy et al., 2018), we place a α ∼ Gamma(1, 1)

prior on α rather than set it at a particular value. Examples of specifying G0 is given in Appendices

A.4, A.5, and A.6 for simulations, data analysis, and log-transform extension respectively.

2.2.3. Posterior Mode Clustering in the Presence of Label Switching

Often we may like to cluster patients using the posterior mode - allowing us to identify and sum-

marize distinct groups in terms of observed characteristics. In mixture models, posterior mode

inference on cluster assignment is complicated by label switching (Rodrguez and Walker, 2014) -

the fact that cluster labels c1:n do not have consistent meanings across Gibbs iterations. For exam-

ple, at iteration t, a new cluster, labeled cluster 2, may be proposed and all subjects previously in,

say, cluster 1 may be re-assigned to this new cluster. Even though the cluster label has changed

from 1 to 2, the cluster still contains the same subjects. Therefore, naively using the mode of the T

cluster indicators, c(1)
i , . . . , c

(T )
i , as each subject as the mode assignment is problematic. To mean-

ingfully cluster subjects based on posterior mode, we perform a deterministic relabeling of cluster

indicators after posterior sampling (Dahl, 2006; Stephens, 2000). We compute for each iteration t

an n× n adjacency matrix with a one in the (i, j)th entry indicating patients i and j were clustered

together and zero indicating otherwise. The element-wise mean of this matrix across the t itera-

tions gives us a posterior mode matrix with (i, j)th entry being the posterior probability of patients i
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and j being clustered together. To obtain cluster assignments, we select the adjacency matrix that

is closest in the L2 sense to the posterior mode matrix. More details regarding the relabeling is

provided in Appendix A.2.

2.3. Counterfactual Prediction and Estimating Causal Contrasts

2.3.1. Review of Counterfactuals and Causal Estimation

We first provide a motivating review of causal estimation before discussing our BNP standardiza-

tion procedure. Consider observing D = (Yi, Ai, Li)i=1:n as defined in Section 2.2.1 from some

target population we wish to make inference about. Using potential outcome notation, let the ran-

dom variable Y A=a represent the potential outcome under treatment A = a. The marginal causal

effect of treatment on the outcome, Ψ = E
[
Y A=1 − Y A=0

]
, can be computed via the method of

standardization under the standard causal identification assumptions (Rubin, 1978) of ignorability,

consistency, no interference, and positivity. Briefly, and in order, these assumptions require that all

confounders are controlled for, that there is only one form of each treatment, that each patient’s

outcome is independent of others’ treatment assignments, and that treatment assignment is not

deterministic for any individual in the population. We provide a formal statement in Appendix A.3.

In the Bayesian framework, standardization is conducted using the posterior predictive distribution

of the outcome (Keil et al., 2017). Throughout, we use tildes to denote posterior predictive draws.

Let Ỹ a denote the posterior predictive outcome under intervention A = a with predictive distribution

p(Ỹ a|D). Also, let L̃ denote a posterior predictive draw of confounders. If the causal assumptions

hold, standardization under intervention A = a is given by

E(Ỹ a|D) =

∫
θ

∫
β

∫
L̃

E(Ỹ |A = a, L̃, β)p(L̃|θ)p(β, θ|D) dL̃ dβ dθ (2.3)

Above, β and θ are parameter vectors that govern the conditional distribution of the outcome

and the distribution of the confounders, respectively. This slightly differs from frequentist stan-

dardization by additionally averaging a prediction model for the outcome, E(Ỹ | A = a, L̃, β) ,

over the posterior distribution of the parameters, p(β, θ|D). Given T draws from the posterior

(θ(t), β(t))t=1:T , we can compute Equation 2.3 by first drawing l̃(t) ∼ p(L̃|θ(t)), then computing

E[Ỹ |A = a, L̃ = l̃(t), β(t)]. This yields a posterior distribution for the difference {δ(t)}1:T = {E[Ỹ |A =
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1, L̃ = l̃(t), β(t)]− E[Ỹ |A = 0, L̃ = l̃(t), β(t)]}1:T . The posterior mean Ψ̂ = T−1
∑
t δ

(t) can be taken

as a point estimate of Ψ, while percentiles can be used for interval estimation. Standardization in

Equation 2.3 crucially requires both a correctly specified regression for the outcome as well as an

accurate estimate of the marginal confounder distribution. As correct specification is unlikely, ro-

bust estimation requires nonparametric modeling. This is especially the case in medical cost data -

where multimodality, zero-inflation, and skewness are unlikely to be captured by simple parametric

models.

2.3.2. Sampling from the Posterior Predictive Distribution

The model outlined in Equation 2.1 yields a flexible predictive distribution, which in turn yields robust

causal effect estimates. Under standard causal identification assumptions, the posterior predictive

distribution of potential outcome Ỹ a is given by

p(Ỹ a|D) =
α

α+ n

∫
ω̃

∫
L̃

p(Ỹ |A = a, L̃, ω̃)dP (L̃|ω̃)dG0(ω̃)

+
1

α+ n

∫
ω1:n

[ ∫
L̃

n∑
i=1

p(Ỹ |A = a, L̃, ωi)dP (L̃|ωi)
]
dP (ω1:n|D)

(2.4)

A derivation is provided in Appendix A.1. Note that the particular forms of p(Ỹ |A, L̃, ω) and p(L̃|ω)

are specified in Equation 2.1. We can draw from this distribution via Monte Carlo. For each of the

T posterior draws, (ω
(t)
1:n)t=1:T from p(ω1:n|D), draw from the conditional distribution l ∼ p(L̃|ω(t)

i ).

Then, under intervention A = a, we can draw from ỹ
(t)
a ∼ p(Ỹ |A = a, L̃ = l, ω

(t)
i ). For the tth draw,

the inner integral over ω̃ in Equation 2.4 can be evaluated numerically by drawing from the prior

ω̃0 ∼ G0, then drawing confounders conditional on this prior draw l̃ ∼ p(l̃|ω̃0). This procedure yields

predictive draws {ỹ(t)
a }t=1:T .

After obtaining draws {ỹ(t)
1 }1:T and {ỹ(t)

0 }1:T , we can compute T draws of the difference {δt}t=1:T ,

where δt = ỹ
(t)
1 − y

(t)
0 . Thus, a Bayesian nonparametric point estimate of Ψ is given by Ψ̂BNP =

E[Ỹ 1|D]− E[Ỹ 0|D] ≈ 1
T

∑
t δt. Intervals can be constructed using percentiles of {δt}1:T . Quantile

causal effects and counterfactuals (Xu, Daniels, and Winterstein, 2018) may also be computed from

Equation 2.4. We estimate the posterior predictive CDF of the potential outcome under intervention

a using the posterior predictive draws, Fa(v) = P (Y a ≤ v|D) ≈ 1
T

∑T
t=1 I(ỹ

(t)
a ≤ v). The inverse of

this estimated CDF can be used to estimate quantile causal effects. For instance, the median causal
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effect can be estimated as the difference in median cost under two interventions F−1
1 (.5)−F−1

0 (.5).

This contrast may be preferable to Ψ for skewed outcomes.

2.3.3. Assessing the Positivity Assumption

Positivity is the only identification assumptions that can be assessed empirically. The assumption

requires that the probability of treatment is bounded 0 < P (A = 1|L) < 1, ∀L. Violations of

positivity (e.g. P (A = 1|L) = 1) imply that there are subgroups of the data for which no comparator

patients exist, thus forcing the model to extrapolate when computing causal contrasts. Incorrect

extrapolation in these regions will bias causal effect estimates. There are many methods of handling

violations once they are identified (Petersen et al., 2012), but these are out of scope for this paper.

Here we simply provide a framework for assessing this assumption within the unique context of

our zero-infalted DP model. Note in Equation 2.1, we have explicitly modeled treatment probability

as a function of covariates. This allows us to predict treatment probability for each patient, given

posterior draws (ωt1:n)t=1:T via Monte Carlo:

P (Ã = 1|l,D) ≈ 1

T

T∑
t=1

α
α+n

∫
ω̃
p(Ã|l, ω̃)p(l|ω̃)dG0(ω̃) + 1

α+n

∑n
i=1 p(Ã|l, ω

(t)
i )p(l|ω(t)

i )

α
α+n

∫
ω̃
p(l|ω̃)dG0(ω̃) + 1

α+n

∑n
i=1 p(l|ω

(t)
i )

(2.5)

A derivation is provided in Appendix A.1. Using the above, we can compute P (Ãi = 1 | Li, D) for

each subject in our sample. Typically, histograms of these probabilities are plotted for treated and

untreated patients separately. Separated distributions indicate a lack of overlap and, therefore, high

posterior belief of a positivity violation.

2.4. Simulation Study

In this section, we evaluate bias of Ψ̂BNP , coverage of the credible interval estimates, and precision

of the estimate as measured by interval width. We compare results to existing methods that may

be considered by researchers faced with zero-inflated outcomes - namely BART, a non-Bayesian

doubly robust estimator, and two parametric Bayesian Gamma models. BART is a Bayesian non-

parametric, tree-based ensemble for the conditional mean of the outcome. The doubly robust esti-

mator is a two-part model for treatment assignment and the outcome. We use a boosted frequentist

logistic regression for the treatment model and a frequentist Gaussian model for the outcome. The

first parametric model is a Bayesian Gamma hurdle model. This is a two-part model that explicitly
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models the probability of the outcome being zero with a logistic regression, while modeling posi-

tive outcomes with a Gamma regression. The second parametric model is a naive, yet somewhat

common, approach of adding .01 to zero outcome values and modeling this transformed outcome

using a Bayesian Gamma regression. We refer to this as the Gamma +.01 model.

We simulate from two data generating processes (DGPs). In the clustered DGP, we simulate data

from three distinct clusters - each with its own set of parameters that govern confounder distribu-

tions, binary treatment assignment, zero-inflation, and Gamma-distributed positive outcomes. The

Gamma distribution is used to simulate realistic cost data that are non-negative and skewed within

each cluster. Thus, the local conditional outcome distribution assumed in Equation 2.1 is deliber-

ately misspecified. In the parametric DGP, we simulate data from a single cluster with a common

covariate distribution, treatment assignment model, zero-inflation, and Gamma-distributed positive

outcomes. The data are skewed, but not multimodal. Other simulation details regarding hyperpa-

rameter settings and sampling are given in Appendix A.4.

Table 2.1: Results across 1000 simulated datasets with 3000 subjects each. Average bias of the
posterior mean is reported as a proportion of the true value (Ψ = −9740.3 in the clustered setting
and Ψ = −10184.1 in the parametric setting). Mean credible interval widths are presented for the
Zero-inflated DP model, the BART model, and two Gamma models. Confidence intervals are given
for the doubly robust method. In the parametric setting, we have 45% in the clustered setting
and 55% in the parametric setting. We simulate with one continuous covariate and four binary
covariates, all of which affect zero-inflation, treatment probability, and the outcome. All models
condition on the simulated confounders so that ignorability holds.

DGP Model Bias Coverage Interval Width

Clustered

Zero-Inflated DP -.081 94.3% 21612.2
BART -.746 76.2% 26374.2
Doubly Robust .795 87.1% 33449.3
Gamma Hurdle -.509 79.8% 19692.2
Gamma +.01 1.817 4.7% 27358.1

Parametric

Zero-Inflated DP .097 95.1% 22034.1
BART -.054 96.1% 23825.3
Doubly Robust -.027 95.9% 23339.1
Gamma Hurdle -.014 95.1% 21778.7
Gamma +.01 -.489 100% 50580.3

In the clustered setting, the zero-inflated DP model produces effect estimates with the smallest

bias - −8.1% of the true value. The 95% credible interval has close to nominal coverage of 94.2%.

Though the Gamma hurdle model cannot handle multimodality, it outperforms both BART and the

doubly robust estimators due to its explicit modeling of structural zeros and skewness. The latter

two models capture neither zero-inflation nor multimodality and consequently perform poorly.
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In the parametric setting, the zero-inflated DP model again exhibits low bias and close to nominal

coverage. BART and the doubly robust models have lower bias, but exhibit slight overcoverage

(about 96%) in the interval estimates. The Gamma hurdle model is correctly specified in the para-

metric DGP and so performs the best - exhibiting the lowest bias of 1.4%, 95.1% coverage, and

yielding the shortest interval. Relative to this correctly specified hurdle model, the Zero-inflated

DP has only a slightly wider interval length on average (22034.1 versus 21778.7), suggesting little

efficiency loss. BART and the doubly robust estimators both have wider intervals than the DP on

average.

The particularly bad performance of the naive Gamma +.01 model - under both DGPs - should be

noted. While it is a simple, seemingly harmless trick, adding a small constant severely degrades the

accuracy and precision of treatment effect estimates. Unlike the hurdle model and DP model, it does

not model structural zeros, and so ignores the effect of treatment that generates these zeros. The

zero-inflated DP mixture captures multi-modality, skewness, and the treatment’s effect on structural

zeros. This allows for good treatment effect estimates under both simple and pathological data

distributions with minimal efficiency loss if the parametric model is correct.

2.5. Application: Inpatient Medical Costs of Endometrial Cancer Treatments

In this section, we use the proposed DP mixture of zero-inflated regressions to analyze inpatient

medical costs among patients with endometrial cancer. Patients who were diagnosed with en-

dometrial cancer between 2000 and 2014 were identified in the SEER Medicare database. Those

assigned to either radiation or chemotherapy post-hysterectomy were followed for a maximum of

two years after initial treatment. The total inpatient costs, measured in 2018 US dollars, accrued

over the followup period was recorded and is our primary outcome of interest. Inpatient costs are

costs that accrue during overnight hospitalizations and do not include costs such as prescription

treatment costs, outpatient costs, or hospice care costs.
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Table 2.2: Baseline Characteristics: Means and standard deviations are reported for continuous
variables. Counts and percentages are reported for categorical variables. Standardized mean
differences (SMD) are provided. All monetary amounts are in thousands of 2018 U.S. Dollars.

Chemotherapy Radiation SMD

(N=92) (N=952)

Total Inpatient Costs ($) 22.1 (28.6) 23.4 (34.5) .039

Zero Costs 14 (15.2%) 75 (7.9%)

Age (years) 73.68 (6.98) 73.25 (5.98) .066

Household Income ($) 64.4 (32.4) 56.8 (26.2) .257

White 76 (82.6%) 835 (87.8%) .147

Diabetic 20 (21.7%) 197 (20.7%) .026

CCI .350

0 49 (53.3%) 529 (55.6%)

1 22 (23.9%) 260 (27.3%)

≥2 21 (22.8%) 131 ( 13.8%)

Grade = 1 28 (30.4%) 208 (21.8%) .196

FIGO Stage I-N0 or I-A 63 (68.5%) 357 (37.5%) .653

Table 2.2 presents baseline characteristics of the two treatment groups. There is a significant

proportion of zero costs - 15.2% in the chemotherapy arm versus 7.9% in the radiation arm.

Chemotherapy subjects have lower inpatient costs over the follow up period. However, there may

be several confounding factors. For example, the primary determinants of post-hysterectomy treat-

ment are the stage and grade of the cancer, with consideration for patient commorbidity and age.

These factors, which are measured pre-treatment, likely also affect inpatient costs. The standard-

ized mean difference for stage, grade, and CCI are all > .1.

In the following subsections, we demonstrate how our method can be used to model the data from

several angles. All results are from posterior sampling of the model in Equation 2.1. We control

for race, CCI, household income, cancer grade and stage in both the positive outcome model and

the zero-probability model. We model treatment assignment as a function of these confounders

as well. We assume local Gaussian distributions for CCI and household income and Bernoulli

distributions for binary covariates. Details about hyperparameter settings, priors, and sampling
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results are provided in Appendix A.5.

2.5.1. Multi-modality and Clustering Results

The patients in this study are heterogeneous in terms of their observed costs and covariates.

Some have extremely high costs, more comorbidities, and come from varying socio-economic back-

grounds. Clustering can be useful for both describing these groups in terms of observed charac-

teristics or motivating new research. There is a vast literature on clustering methods and we do not

claim the DP-induced method is superior, but it does have several advantages. First, since the DP

mixture assumes there are infinitely many clusters in the population (though in a particular analysis,

the number of clusters is bounded by n), we need not specify the number of clusters beforehand.

Second, this method allows for uncertainty quantification around the posterior mode data partition.

Figure 2.1: Clustering results from the zero-inflated DP mixture. Colors indicate posterior mode cluster
assignment. The first panel projects clustering results onto the cost-income space and the second projects the
results onto the cost-CCI space - both relevant dimensions for understanding costs. The third panel visualizes
the full posterior mode matrix discussed in Section 2.2.3 with a network diagram. Each node represents
a patient and the lengths of vertices connecting any two nodes are inversely proportional to the posterior
probability of being clustered together. The position of the nodes in x-y space have no meaning (hence the
absence of axis labels), only the relative distance between nodes are relevant.

Two potentially important confounders of costs and treatment assignment are household income

and CCI. The first two panels of Figure 2.1 visualize cost along these dimensions. While we initialize

the model with five clusters, the model identified ten clusters in the posterior - introducing five

additional clusters to accommodate the complexity of the data. In the first panel, we see the orange

cluster has very high costs, the blue cluster has moderately high costs, while the green and red

clusters have lower costs. There are two results worth noting. First, the light blue and gray clusters
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represent patients who have such distinctly high costs that the DP model places them in their own

cluster. Second, the black points represent patients who, while having similar costs to most patients,

have distinctly high household income. Thus the DP model places them in their own cluster. From

this we can see that the clustering is happening in multiple dimensions rather than only on the cost

space.

Similarly, we cannot see much difference between the green and red clusters on the cost-household

income space. However, the second panel shows that these patients occupy distinct places on the

cost-CCI space, where the red cluster ranks lower than green on CCI. It may be clear at this point

that visualizing clustering in two-dimensions is limited by the need to choose the variables on each

dimension. The third panel solves this issue by visualizing the entire posterior mode matrix dis-

cussed in Section 2.2.3 as a network diagram. We can use this diagram to get a sense of the

uncertainty around the mode cluster assignment/partition. For example, the nodes between the

red and green cluster have very uncertain assignment. About half the time, they were clustered

with the red patients and the other half they were clustered with the green patients - indicating we

should not have very high confidence in their posterior mode assignment. This type of uncertainty

characterization is absent in many classical clustering algorithms, like K-means. We can sum-

marize observed characteristics of patients by posterior mode assignment. In the orange cluster,

average cost in this cluster is $71,139. The distribution of CCI in this group is skewed much higher,

suggesting a possible positive association between cost and CCI. On the other hand, we can see

from Figure 1 that the light blue cluster has much higher costs (first panel), yet these subjects are

relatively low on the CCI scale (second panel). The relationship between cost and CCI seems

unclear - and perhaps this motivates future research targeted at learning this relationship.

2.5.2. Cost Prediction in Presence of Zero-Inflation

Induced clustering is the core strength of DP mixtures: a single parametric model estimated using

heterogeneous data will have worse fit than an ensemble of locally parametric models fit on more

homogeneous partitions. Figure 2.2 demonstrates the proposed model’s effectiveness at capturing

the cost distribution. The predictive cost distributions are quite similar to the observed distribution.

This is not the case for the BART and hurdle models - which fail to capture the high end of the

distribution and, therefore, consistently under-predict costs.
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Figure 2.2: Top row: QQ plots of percentiles (.02 - .98 in increments of .02) of the observed cost distribution
against predictive cost distributions. Each gray line is a draw of the same size as the data from the predictive
cost distribution. The blue line indicates the mean of each percentile across these predictive draws while the
dashed line indicates equality (a perfect fit). The DP mixture opens new cluster to capture skewness - resulting
in a predictive distribution closely matching the observed data. The BART model and hurdle model cannot
capture this extreme skewness. This is also demonstrated in the bottom row: the DP model occasionally
predicts very high costs, while predictions from BART and hurdle models hardly ever predict such high costs.

In the second row of plots, we see the DP model occasionally predicts very high costs, while having

the bulk of the predictions at < $50, 000. Both BART and the Hurdle model capture the lower end of

the cost distribution well - also predicting the bulk of the costs at < $50, 000. However, they rarely

predict costs at the high end - thus, failing to capture skewness.

2.5.3. Estimating Causal Contrasts and Assessing Overlap

Finally, we use our method to estimate differences in costs that would have accumulated over two

years under hypothetical interventions where everyone received radiation versus everyone received

chemotherapy as their first post-hysterectomy treatment. After applying the method of Section

2.3.3, Figure 2.3 shows there is adequate overlap between the two treatment groups, reducing

concerns about positivity violations.
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Figure 2.3: Posterior propensity scores calculated using Equation 2.5 for both groups indicate adequate
overlap - suggesting no evidence of positivity violations.

We use the method of Section 2.3 to compute a marginal causal effect, a median causal effect,

and a risk ratio contrasting the probability of zero cost under radiation versus chemotherapy. Pos-

terior means and credible intervals are displayed in Table 4. Under standard causal identification

assumptions, we estimate the causal difference in costs to be $1672 (CI: −2566, 5722), showing

radiation therapy to be more expensive. We estimate a median causal difference to be $872 (CI:

−833, 2790). Finally, we estimate that the probability of having zero costs under radiation therapy is

50% (CI: 0.31, 0.78) lower than under chemotherapy. These results are consistent with unadjusted

results (see Table 2.2).
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Table 2.3: Posterior means and credible interval from standardization procedure using DP mixture
along with posterior marginal causal effect estimates and credible intervals from BART, a Gamma
hurdle model, and a Gamma model with zeros replaced by .01. All monetary amounts are in
thousands of 2018 U.S. Dollars.

Marginal Causal Effect Median Causal Effect Causal Risk Ratio of Zero Cost

Zero-Inflated DP 1.7 .9 0.498

(-2.6, 5.7) (-.8, 2.8) (0.31, 0.78)

BART 1.8 - -

(-6.1, 9.8 ) - -

Gamma Hurdle 2 - .505

(-1.5, 5.6) - (.34, .76)

Gamma +.01 4.9 - -

(1, 8.8)

marginal causal effects from BART and the Gamma hurdle model are roughly in-line with the DP

mixture estimates but suffer from relative ineffectiveness at predicting high costs, as explained in

the previous section. The risk ratio estimate from the hurdle model is similar to the DP estimate. We

note that, consistent with simulation results, the marginal causal effect estimate from the Gamma

+.01 model differs greatly from the other three models.

2.6. Discussion and Future work

The proposed DP mixture is ideal for capturing joint distributions with continuous, zero-inflated out-

comes. It is multipurpose: simultaneously modeling structural zeros, inducing clustering to handle

multi-modality, and accommodating skewness in the outcome and covariates. As we show in our

simulation studies, these traits allow our proposed DP mixture to both produce high-quality causal

effects estimates as well as capture the entire outcome distribution. At the same time, posterior

draws from the model can be used to perform posterior checks evaluating the validity of positivity.

One might expect BART to perform better than it did in our simulations and in our analysis of cancer

data. After all, BART is said to be “effectively nonparametric” (Chipman, George, and McCulloch,

2010). However, while it flexibly models the conditional outcome mean, BART still assumes that

the outcome distribution is Gaussian - yielding biased estimates in simulation settings where the
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data are drawn from a skewed distribution like the Gamma. Moreover, it does not account for

multi-modality as it assumes the data are generated from a single mean function and single error

variance. The DP mixture makes no such assumptions - yielding better estimation of the entire

outcome distribution, as was shown in Figure 2.2. We note that very recently George et al., 2018

proposed extending BART by modeling the error term nonparametrically using a DP mixture. This

may better equip BART to handle skewness, though multi-modality will likely remain challenging.

Finally, we consider several extensions of our model for future work. First, while our model provides

a framework for assessing positivity, designing a solution within the framework of our model is

an important extension. Second, unmeasured confounding is always a concern in observational

studies. In our application this concern is mitigated by the fact that post-hysterectomy treatment

assignment mechanism is well defined by American Cancer Society guidelines to be mostly driven

by patient comorbidity, age, cancer stage, and grade. In many settings, the treatment mechanism

may be less well-understood, necessitating sensitivity analyses. Third, standardization provides

valid causal estimates only in scenarios with time-constant treatment and confounding. Extending

this model to a setting with time-varying confounding would be a worthwhile endeavor.
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CHAPTER 3

BAYESIAN NONPARAMETRIC COST-EFFECTIVENESS ANALYSES VIA ENRICHED

DIRICHLET PROCESS PRIOR

3.1. Introduction

Cost-effectiveness analyses (CEAs) are ubiquitous in public health policy and health economics

research, with use-cases ranging from treatment comparison to determining drug coverage and

informing policy. However, they remain statistically challenging for several reasons. First, cost and

effectiveness are often correlated, with joint distributions typically exhibiting extreme skewness and

multimodality. In these settings, parametric models that impose strong distributional, linearity, and

additivity assumptions are not tenable. Second, in many cases effectiveness is operationalized as

gains in survival time - which is prone to right-censoring if subjects drop out before the end of the

study. For such patients, we only observe a lower bound on their survival time and accumulated

costs. Third, CEAs are often conducted using observational data which are less expensive and

more readily available, but are prone to confounding. Valid estimation of CEA contrasts therefore

requires adjustment so that differences in cost-effectiveness due to treatment can be disentangled

from differences due to confounders.

Early statistical literature (Bang and Tsiatis, 2000; Lin, 2003; Lin, 2000; Lin et al., 1997) focused

on cost estimation, while assuming efficacy was constant between treatments. Cost estimation

alone is challenging due to the pathological nature of costs (censoring, skewness, zero-inflation,

etc). Our work enhances this literature by developing a joint model for cost and survival time, rather

than solely focusing on cost. Previous work decomposed the joint distribution into a product of a

marginal survival time distribution and a cost distribution conditional on survival time. Huang, 2002

refer to this as a “calibration regression” approach. Handorf et al., 2019 and Huang, 2002 approach

the modeling from a frequentist point of view. While the former uses a fully parametric approach, the

latter uses a semi-parametric approach - making only first and second moment assumptions. Baio,

2014 took a fully parametric Bayesian approach to joint modeling that did not allow for full covariate

adjustment since the data application of interest was from a randomized trial. In contrast, our

Bayesian joint modeling approach makes neither strong distributional assumptions nor functional
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form (e.g., linearity, additivity) assumptions and allows for covariate adjustment.

Li et al., 2018 took a significant step toward robust causal inference in cost-effectiveness. They for-

mulate causal CEA contrasts in terms of potential outcomes and develop a doubly-robust estimation

approach that combines separate conditional mean models for cost and survival with a treatment

propensity score model. They show that CEA contrasts can be estimated consistently if either the

propensity score or cost/survival regressions are correct. We build on this work in several ways. We

also formulate CEA contrasts in terms of potential outcomes - endowing these contrasts with explic-

itly causal interpretations. However, our modeling approach is fully nonparametric and, therefore,

more flexible than the doubly-robust estimator. While, the doubly-robust approach only uses data

on uncensored subjects (weighted by the inverse probability of being uncensored) our approach

uses data from both censored and uncensored subjects potentially generating efficiency gains.

Moreover, our approach is a Bayesian model for the full joint cost-effectiveness distribution - not

a weighted combination of separate conditional mean models. This in principle allows for full pos-

terior inference for any function of the joint distribution. Finally, our approach allows for covariate-

dependent censoring. Though Li et al., 2018 mention an extension to covariate-dependent cen-

soring, the method proposed and analyzed in their paper relies on randomly censored survival

times.

Specifically, our proposed method decomposes the full joint cost-effectiveness distribution into a

survival distribution, and a cost model conditional on time. We specify a “local” parametric cost

model and a proportional hazard survival model. A Gamma process (GP) prior is placed on the

baseline hazard of the survival time distribution while an enriched Dirichlet process (EDP) prior

is placed on the cost and survival covariate effects of the local models, jointly. A key property

of the EDP is its induced posterior clustering. The EDP probabilistically partitions the dataset

into clusters with similar cost-effectiveness covariate effects and associates different “local” models

with each cluster. Thus, the joint posterior model for cost-effectiveness is an adaptive mixture

of locally parametric models. It is adaptive in the sense that the number of clusters need not

be pre-specified. More or less clusters are introduced depending on the complexity of the cost-

effectiveness distribution.

Our work also advances the literature in Bayesian nonparametric (BNP) causal inference. An array

of nonparametric priors have been successfully applied to causal inference problems (Hill, 2011;
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Kim et al., 2017; Roy, Lum, and Daniels, 2017; Xu, Daniels, and Winterstein, 2018; Xu et al., 2016).

For instance, Roy et al., 2018 use an EDP prior to model joint outcome-covariate distributions

and apply the model to causal estimation with missing-at-random covariates. However, modeling

of bivariate counterfactual outcomes using the EDP and GP has not been explored. In CEAs,

heterogeneity in cost-efficacy is typically either ignored in favor of a single, marginal effect estimate

or is explored along pre-defined subgroups (e.g. hispanic males). Methods in the heterogenous

treatment effects literature such as Bayesian Additive Regression Trees (BART)-based procedures

(Hahn, Murray, and Carvalho, 2020; Henderson et al., 2018) and Causal Forests (Athey and Wager,

2019) are distinct from our approach as they focus on estimating individual-level treatment effects.

Moreover, these methods cannot be readily applied to the joint outcome setting with censoring.

Instead, we use the induced clustering of the EDP to propose subgroups in a probabilistically

principled way. We can then describe each subgroup of the joint in terms of its covariate, cost, and

efficacy distributions and use these to motivate future, targeted studies. We propose a “Differential

Subgroup Index” which measures how much of the cost-efficacy heterogeneity is explained by the

EDP’s partitioning of the joint distribution. This helps us assess the meaningfulness of the clusters.

We begin by providing a brief overview of cost-effectiveness and the desirability of causal esti-

mands. We then present our model along with a Markov Chain Monte Carlo (MCMC) algorithm for

posterior inference. We incorporate our model into a g-computation framework for posterior causal

effect estimation under specified identification assumptions. Finally, we outline how the induced

clustering of the EDP can be used to explore heterogeneity. Simulation studies assessing frequen-

tist properties of our causal effect estimates under various censoring scenarios and generating

models are conducted. We end with a cost-effectiveness analysis of chemotherapy and radiation

therapy treatments for endometrial cancer using SEER-Medicare claims data.

3.2. Overview of Relevant Cost-Effectiveness Contrasts

In this paper, we consider a binary treatment setting where assignment is indicated by A ∈ {0, 1}.

The goal of CEAs is to characterize the relative cost-effectiveness of these two treatments - ne-

cessitating both a cost and efficacy measure. In many settings, the total cost, Y , includes all costs

accumulated under this treatment - e.g., hospitalization and medication costs incurred due to ad-

verse events. Moreover, costs are typically measured from the payer’s perspective, not the patient’s
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perspective. In single-payer systems like that of the United Kingdom, this would be the National

Health Service (NHS). For older patients in the United States, as in our data analysis to follow, the

payer of interest is typically Medicare. Though lifetime costs is often of interest, many CEAs set a

duration for cost accrual (e.g. 2-year costs) due to follow-up constraints. In this paper, we consider

a survival time effectiveness measure, D. This is the dominant effectiveness measure in cancer

CEAs, the motivating data application of our paper.

A typical observational CEA study follows diagnosed patients after assignment to one of two treat-

ment regimes. After some follow-up period, everyone’s (possibly censored) cost and survival time,

are recorded and various cost-effectiveness contrasts can then be computed. For instance, the

incremental cost effectiveness ratio (ICER) is given as ICER = E[Y |A=1]−E[Y |A=0]
E[D|A=1]−E[D|A=0] . This mea-

sures the average cost per unit of effectiveness (increase in survival time). We can also define

a monetary value under each treatment, MV (κ) = Dκ − Y . Here, κ is the “willingness-to-pay”

parameter. It is interpreted as the maximum dollar value the payer is willing to give for a one

unit increase in effectiveness. It is considered a fixed, user-specified value. Here, we will sup-

press notational dependence on κ by simply writing MV where there is no ambiguity. A treat-

ment with positive MV suggests that accrued gains in life value, κD, are greater than accrued

costs. Health economists often assess cost-effectiveness via the average net monetary benefit,

E[NMB] = E[MV | A = 1] − E[MV | A = 0], where we have again suppressed dependence of

NMB on κ. This contrast is closely related to ICER and can be interpreted as the average dif-

ference in monetary value between treatment groups. Note that average NMB can also be written

equivalently as E[NMB] = (E[D | A = 1] − E[D | A = 0])κ − (E[Y | A = 1] − E[Y | A = 0]).

This is linear function of κ with the efficacy differential as the slope and the cost differential as the

intercept. Another related quantity is the Cost Effectiveness Acceptability Curve (CEAC), which is

a curve comprised of P (NMB > 0) plotted for various κ.

However, note that MV and NMB presented above have no causal meaning as treated and un-

treated subjects may differ systematically in observational studies. This is undesirable because

many policy questions are inherently causal with the goal being to estimate the average cost-

effectiveness that would have accrued had everyone taken a particular treatment, possibly counter

to fact. Estimation of MV with causal meaning requires (1) an estimate of the joint distribution

of cost and survival time while adjusting for confounders and (2) causal identification assumptions.
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Even if all relevant confounders are measured and included in the model, misspecification of the ad-

justment model may yield biased estimates of cost-effectiveness contrasts - motivating the need for

robust, nonparametric modeling of the joint. In the following sections we first describe a Bayesian

nonparametric model for the joint outcome conditional on confounders and treatment. We then de-

fine a causal NMB as the difference in average potential monetary value that would have accrued

under each treatment. We go on to formulate the identification assumptions required to estimate

these causal quantities using our nonparametric joint model.

3.3. Joint Nonparametric Model for Cost and Survival Time

We consider a binary treatment setting in which n patients are assigned to treatment Ai ∈ {0, 1} at

baseline. Suppose we are interested in contrasting cost-effectiveness over τ periods (e.g. τ = 2

year cost-effectiveness). We observe data D = {Yi, Ti, Xi, δi}i=1:n from this study. Here, Xi =

(Ai, Li) is a covariate vector that contains the treatment indicator and a vector of q categorical

or continuous pre-treatment confounders, Li. For notational convenience, we proceed without an

intercept, but a 1 can be included as the first entry ofXi. We let Ti = min(Di, Ci, τ) be the observed

time under study (the minimum of a random right-censoring time Ci, end of study τ , and death

time Di). Define a censoring indicator as δi = I(Di > min(Ci, τ)) Finally, Yi ∈ Y denotes cost

accumulated through time Ti. The joint distribution can be factored into a distribution for observed

time and cost distribution conditional on time. A joint model follows from specifying “local” models

for each of these two distributions:

Yi | Ti, δi, Xi, ωi ∼ p(Yi | Ti, δi, Xi, ωi)

Ti | δi, Xi, θi, λ0 ∼ λ0(t) exp(X ′iθi)

ωi, θi | G ∼ G.

(3.1)

At a particular time, T , cost follows some local distribution p(Yi | Ti, δi, Xi, ωi) governed by param-

eters ωi. Survival time follows some local hazard function which is parameterized as having some

baseline hazard, λ0 with covariate effects, θi, multiplying this baseline hazard. Lastly, ωi and θi -

the covariate effects of the cost and effectiveness model - both follow some joint prior distribution G,

which is unknown. Choice of the local models are application-specific but are not crucial for model

fit, as will become apparent when we discuss the nonparametric priors used for G and λ0.
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One consideration when choosing the local model is desired predictive support. For instance, if

costs are sufficiently far from zero, we may be willing to set p(Yi | Ti, δi, Xi, ωi) to a Gaussian over

Y = R with mean and variance ωi = (µi, φi). The corresponding regression could be specified

as µi = (Ti, δi, Xi)
′βi. If the non-negative nature of costs must be respected, we could instead

specify a log-normal distribution over Y = R+. For applications with zero-inflated costs, we may

wish to explicitly put positive measure on zero - i.e. setting Y = {0} ∪ R+. This can be done

by specifying a two-part model Yi | Ti, δi, Xi, ωi ∼ πiδ0(Yi) + (1 − πi)f(Yi | Ti, δi, Xi, βi), where

πi = P (Yi = 0 | Ti, δi, Xi, γi) is a covariate-dependent model for the probability of cost being zero

(e.g. a local logistic regression) and δ0 is the point mass distribution at 0. In this case, the cost

parameter vector is ωi = (γi, βi). Oganisian, Mitra, and Roy, 2020 developed a nonparametric

Bayesian estimation procedure for such a two-part model, where f could be either log-Normal or

Normal, using a Dirichlet Process prior.

In (3.1), censored patients contribute to the likelihood through both the cost and survival time

models. In the survival model, they contribute to the likelihood through the survival function in

the usual way, provided that, conditional on covariates, censoring times are independent of sur-

vival times. Specifically, the probability distribution of death times can be expressed in terms

of the hazard above, λ(d; θi, X) = λ0(d) exp(X ′iθi), as p(d | θi, λ0, Xi) = λ(d; θi, Xi) exp
(
−∫ d

0
λ(u; θi, Xi)du

)
. Similarly, the survival distribution can be expressed as P (D > d | Xi, θi) =

exp
(
−
∫ d

0
λ(u;Xi, θi)du

)
. Censored subjects (δi = 0) contribute to the likelihood via P (D > Ci |

θi, λ0, Xi). Failed patients (δi = 1) contribute via p(Di | θi, λ0, Xi). In the cost model, dead patients

provide information about the cost distribution at death time p(Yi | T = Di, δ = 0, Xi, ωi), while

censored subjects inform the model at time of censoring p(Yi | T = Ci, δ = 1, Xi, ωi).

3.3.1. Nonparametric Priors

We specify the following nonparametric priors on the unknown model quantities, G and λ0.

G | αω, αθ ∼ EDP (αω, αθ, G0)

λ0 | b, λ∗0, ξ ∼GP (bλ∗0, b, ξ),

(3.2)

Above, EDP denotes the Enriched Dirichlet Process (Wade et al., 2014) prior on G and GP denotes

the dependent Gamma Process prior (Nieto-Barajas and Walker, 2002) on the baseline hazard
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λ0. These priors are nonparametric in the sense that they are probability measures on infinite-

dimensional objects - the former over probability distributions and the latter over hazard functions.

Realizations, G, from the EDP are discrete probability distributions centered around a base distri-

bution G0(ωi, θi) = G0ω(ωi)G0θ|ω(θi|ωi) with two concentration parameters, αω and αθ. Some prior

realizations are visualized in the left panel of Figure 3.1. Just as with the Dirichlet Process (DP),

this discreteness induces a posterior clustering of patients. Unlike the DP, the clustering induced

by the EDP is nested. A posteriori, patients with similar cost parameters are clustered together

into what we call ω-clusters. Within each ω-cluster, patients with similar effectiveness parameters

are clustered together (θ-clusters). The EDP prior does not require pre-specification of the number

of clusters. The clustering is data-adaptive, with more clusters being introduced to capture more

complex cost-effectiveness distribution. The posterior model for the joint distribution is an adaptive

nested mixture of cost-effectiveness models - with each component model having the form of the

local model in (3.1), but with different component-specific parameters. In the machine learning

literature, these models are often referred to as “mixture of experts” learners: the data space are

partitioned into homogenous regions, each having its own model that develops “expertise” in that

region. This is in contrast to ensemble learners (e.g. BART and Random Forests), which apply

multiple models to the entire data and combine the results post-hoc.

The GP can be thought of as a prior over the space of hazard functions. Each realization λ0 from

the GP is a hazard function centered around a mean function λ∗0 with concentration parameter b.

Some prior realizations are visualized in the right panel of Figure 3.1. The process is “dependent”

in that it induces a prior AR(1) autocorrelation structure on λ0: the hazard at time point t is a

weighted average of the hazard at the previous time point and the prior hazard, λ0. The resulting

shrinkage/smoothness, controlled by hyperparameter ξ, regularizes the empirical estimate of the

baseline hazard - which can be erratic at later time points when the at-risk set becomes small.

These prior choices are motivated by the shortcomings of the standard DP. A potential issue with

specifying G ∼ DP (αG0) is that it imposes a single layer of clustering for both cost and effective-

ness. Many clusters may be introduced to fit the joint of Y and T if one of these dimensions is more

complex - even if the other is very simple. This makes estimates needlessly variable. The nested

nature of the EDP avoids this by allowing varying number of clusters on each dimension controlled

by separate concentration parameters. Thus, it is possible to introduce a single cost cluster that
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Figure 3.1: Realizations of the Enriched Dirichlet and Gamma Processes. (a) 100 draws of
(θ, ω) ∼ G where G ∼ EDP (10, 10, N2(0, I2)). Note the nested discreteness of G causes ties (i.e.
clustering) among the draws: there are 80 other draws with the same ω value as the blue point, but
with different θ values. Twenty three of those 80 also have the same θ value. (b) Gray lines show
50 hazard realizations from a gamma process centered around the hazard of a Weibull(1.5, 2)
distribution. The blue line shows the mean of the 50 realizations.

has many survival time subclusters. Similarly, modeling the baseline hazard separately avoids in-

troduction of excess clusters to fit a potentially complicated function which, for causal estimation

purposes, is just a nuisance parameter. This is also the reason why we opt for a proportional haz-

ard (PH) formulation rather than an accelerated failure time (AFT) approach: PH models clearly

separate the covariate effects from the baseline risk, which we do not want influencing the EDP

mixture.

3.3.2. Posterior Inference using Markov Chain Monte Carlo

Inference for (3.1) is done via MCMC. We follow the general scheme of Neal’s algorithm 8 (Neal,

2000), which introduces auxiliary parameters to sample from the DP posteriors. Roy et al., 2018

used this approach to sample EDP posteriors, though without a Gamma Process update and no

joint outcome considerations. The idea is to introduce latent cluster indicators (the auxiliary pa-

rameters) for each subject. Conditional on draws in the previous iteration, each MCMC iteration

then updates clustering indicators conditional on parameters and before updating cluster-specific

parameters conditional on these newly updated indicators. At iteration m, we may have J (m) oc-
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cupied ω-clusters indexed by j ∈ {1, . . . , J (m)} and, within the jth ω-cluster, we may have K
(m)
j

occupied θ-clusters indexed by kj ∈ {1, . . . ,K(m)
j }. Let c1:n = (c1, . . . , cn) be cluster assignment in-

dicators where each ci is a length two vector with first and second entry indicating membership to an

ω-cluster and θ-subcluster, respectively. Throughout, we use the notation va:b, where a < b are in-

tegers, to denote the collection (va, va+1, . . . , vb) . Let ω[j] represent the cost parameter associated

with cluster j and θ[j,k] represent the effectiveness parameter associated with the kth subcluster of

ω-cluster j. We should strictly denote θ[j,k] as θ[j,kj ] but suppress the subscript throughout wher-

ever reference is clearly made to the kth subcluster of ω-cluster j. Moreover, define n−ij and n−ij,k as

the number of subjects (excluding subject i) currently occupying ω-cluster j and ω-θ cluster (j, k),

respectively, at the current iteration, m. At each iteration m we conduct the following sequence of

conditional posterior updates:

• Update cluster membership:

– Propose parameters for a new θ-subcluster for each existing ω-cluster, {θ
[j,K

(m)
j +1]

: j ∈

1, . . . , J (m)} by drawing from the prior G0.

– Similarly, propose parameters for new ω-cluster with θ subcluster, {ω[J(m)+1], θ[J(m)+1,1]}.

– Conditional on current draws of all cost-effectiveness parameters and λ(m)
0 (indicated by

“−” for compactness), update c(m)
i according to the following probabilities:

P (c
(m+1)
i | −,D) ∝



n−ij n−i
j,k

n−ij +αθ
p(Yi, Ti | Xi, δi, ω(m)

[j] , θ
(m)

[j,k], λ
(m)
0 ) existing j, k

n−ij αθ

n−ij +αθ
p(Yi, Ti | Xi, δi, ω(m)

[j] , θ
(m)

[j,K
(m)
j +1]

, λ
(m)
0 ) existing j, new k

αωp(Yi, Ti | Xi, δi, ω(m)

[J(m)+1]
, θ

(m)

[J(m)+1,K
(m)
j +1]

, λ
(m)
0 ) new j, k

• Update cluster parameters: These require Metropolis-Hastings steps if G0ω or G0θ|ω are not
conjugate.

– Update each cluster’s cost parameter, ω[j], by drawing from conditional posterior

ω
(m+1)
[j] ∼ p(ω[j]|c

(m+1)
1:n ,D) ∝ G0ω(ω[j])

∏
i|c(m+1)
i ∈(j,·)

p(Yi|Ti, Xi, δi, ω[j])

– For each j, update all θ[j,kj ] by drawing from conditional posterior

θ
(m+1)
[j,k] ∼ p(θ[j,k]|c

(m)
1:n , λ

(m)
0 ,D) ∝ G0θ|ω(θ[j,k])

∏
i|c(m)
i ∈(j,k)

p(Ti | Xi, δi, λ
(m)
0 , θ[j,k])

• Update baseline hazard, λ(m+1)
0 : This is a multi-step update involving a discretization of the
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time interval [0, τ ] into increments, then modeling the hazard rate in each increment. This is
motivated by the fact that if λ0 follows a Gamma Process, then the hazard rates in any finite
partition of the time interval have Gamma distributions (Nieto-Barajas and Walker, 2002).
Additionally, the latent parameters inducing the AR(1) smoothness across increments are
also updated with a mix of grid sampling and adaptive Metropolis steps. Details are provided
in Appendix B.2.

Note that the induced nested clustering of the EDP is explicitly encoded into this sampler. In the

cluster-update step, a given subject is most likely to be assigned to the cluster with parameters that

yield the highest joint-distribution evaluation (i.e. fit their data the best). Moreover, each subject can

possibly be assigned to a new cost cluster, new effectiveness cluster within an existing cost cluster,

or a new cost-effectiveness cluster. This last event is likely to occur if, for example, the subject

is so unique that random parameter draws from the prior fit that subject’s data better than any of

the existing cluster-specific parameters. Furthermore, note that each term for an existing cluster in

P (c
(m+1)
i = (j, k) | −, D) is an increasing function of the number of patients already assigned to

that cluster. This is the well-known “rich-get-richer” property of the EDP - the a priori favoring of as-

signment to larger clusters. This prevents over-fitting by penalizing small clusters. After every cycle,

c
(m+1)
i maps each subject to a set of updated parameters (ω

(m+1)
i , θ

(m+1)
i , λ

(m+1)
0 ). After a suffi-

cient burn-in period this algorithm produces M draws from the posterior {ω(m)
1:n , θ

(m)
1:n , λ

(m)
0 , c

(m)
1:n }1:M .

These can be used to do full posterior inference on any functional of the joint including, as we will

see, causal estimands.

3.3.3. Priors and Hyperparameter Choice

The hyperparameters for the EDP are the base distribution G0(ωi, θi) = G0ω(ωi)G0θ|ω(θi|ωi) and

the concentration parameters αθ and αω. Following previous papers (Oganisian, Mitra, and Roy,

2020; Roy et al., 2018), we use prior independence so that G0(ωi, θi) = G0ω(ωi)G0θ(θi) and set

G0θ(θi) = N(θ̂PH , νθĈPH). Here, we are centering the cluster-specific covariate effects around the

Cox proportional hazard estimate, θ̂PH . The prior covariance matrix, ĈPH , is diagonal with the

square of the Cox proportional hazard standard error estimates along the diagonal. The parameter

νθ > 0 is a user-specified scalar that controls how tightly or widely dispersed the cluster-specific

effects are around the Cox estimates.

The choice of G0ω(ωi) depends on the choice of local cost model. Suppose our local model,

p(YiTi, δi, Xi, ωi) is Gaussian, N(µi, φi) with regression µi = E[Yi | Ti, δi, Xi, ωi] = (δi, Ti, Xi)
′βi
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and variance φi, where βi is the vector of covariate effects. The full cost parameter vector is

ωi = (βi, φi) and we could set G0ω(βi, φi) = N(βi; β̂, νωΣ̂)IG(φi; shape = a0, scale = ŝ2(a0 − 1).

The vector β̂ is the MLE estimate of the cost regression and Σ̂ is a diagonal matrix with the square

of the standard error estimates along the diagonal. The parameter νω > 0 is user-specified and

controls the tightness of the prior around β̂. Similarly, the Inverse Gamma prior for φi having mean

equal to the empirical outcome variance, ŝ2 = 1
n−1 (Yi − Ȳ )2. The user-specified parameter, a0,

controls how widely the cluster-specific variances are dispersed around the empirical variance,

with higher values corresponding to a tight prior around the empirical estimate. Finally, we follow

previous approaches (Oganisian, Mitra, and Roy, 2020; Roy et al., 2018) and set Gam(1, 1) (i.e.

flat, uninformative) priors on each of the concentration parameters. These parameters can be

interpreted as prior sample sizes for the cost and effectiveness clusters - higher values on average

lead to more occupied clustering. Thus, this Gamma prior penalizes many occupied clusters, but

has a long tail to allow posterior deviations if demanded by the data.

Finally, we center the Gamma Process prior around a constant hazard function. Specifically, we

compute the Nelson-Aalen estimate of the baseline cumulative hazard, then take the difference

between each point on this curve to obtain the baseline hazard estimate at each time point. We

then compute the average of these hazard rates across time, λ̂. Then, in GP (bλ∗0, b, ξ) we can set

λ∗0 to be exponential with rate λ̂. Intuitively, this expresses the prior belief of a constant hazard (with

rate in the range of the observed rates). However, if the data disagrees, the posterior will move us

to a richer estimate governed by the data. The parameters ξ and b can be used to calibrate degrees

of informativeness. For example ξ near zero and large b corresponds to an informative prior belief

of a constant hazard. Conversely, values of b near 0 correspond to an uninformative prior.

3.4. Posterior Causal Estimation via g-Computation

Here we describe full posterior inference for various causal estimands expressed in terms of poten-

tial outcomes (Rubin, 1978). In scenarios with censored outcomes, causal estimands are typically

formulated under a hypothetical “joint intervention” (Robins, Hernán, and Brumback, 2000) on both

treatment and censoring. Let MV A=a,δ=0 = DA=a,δ=0κ − Y A=a,δ=0 be the monetary value that

would have accrued over τ periods had the patient received treatment a and not been censored.

The components Da,0 and Y a,0 are the survival time and costs, respectively, that would have been
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observed under treatment A = a had the subject not been censored. The population-level estimand

of interest is Ψ = E[NMB] = E[MV 1,0] − E[MV 0,0]. This is the average difference in monetary

value that would have accrued over τ periods had everyone in the target population been assigned

to treatment 1 versus treatment 0, and not been censored. In general, interventions in observa-

tional CEAs are not random. Instead, they are driven by confounders - factors which both influence

treatment and cost-effectiveness. Thus, E[MV a,0] 6= E[MV | A = a, δ = 0] in general, since those

who actually received treatment and remained uncensored may not be representative of the target

population. Suppose, however, that we observe a set of pre-treatment confounders, L. Under the

following extensions of the usual causal identification assumptions, we can identify Ψ:

IA.1 Joint ignorability : (Y a,δ, Da,δ) ⊥ (A, δ) | L. Conditional on L, censoring and treatment should

be as good as random - being completely independent of the death and costs that would

have accrued under a particular treatment. Omission of unmeasured drivers of both the joint

intervention or cost-effectiveness would result in a violation of this assumption.

IA.2 Joint Consistency : (Y a,0, Da,0) = (Y,D) | A = a, δ = 0. This requires that cost and death time

observed for an uncensored (δ = 0) subject assigned treatment A = a is actually (Y a,0, Da,0).

This could be be violated if, for instance, we had non-compliance to the treatment. Then, a

subject assigned a may not have actually taken a and thus we would not observe Y a,0.

IA.3 Joint Positivity : 0 < P (A = a, δ = 0 | L) < 1. The joint intervention cannot be deterministic at

any level of L. This could be violated if, for example, all uncensored males received treatment

A = 1 - leaving us with no information on how well uncensored males with treatment A = 0

faired. In these cases, the model may extrapolate the outcome under treatment A = 0 learned

from females onto males. Poor extrapolation could lead to bias.

IA.4 No Joint Interference: (Y a1:n,δ1:ni , Da1:n,δ1:n
i ) = (Y ai,δii , Dai,δi

i ). Here, a1:n and δ1:n are n-

dimensional vectors containing each subject’s treatment and censoring status. This assump-

tion requires that one person’s joint treatment-censoring intervention cannot impact another’s

cost-effectiveness. It allows us to drop all but the ith element of a1:n and δ1:n. Usually this as-

sumption would be violated in infectious disease exposures or other settings where subjects

cannot be reasonably viewed as exchangeable (one person’s infection status may impact

another’s infection probability).
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Under these assumptions, Ψ is identified via Robins’ g-formula (Robins, 1986)

Ψ(ω1:n, θ1:n, λ0) =

∫
L

(
E[MV | A = 1, δ = 0, L, ω1:n, θ1:n, λ0]

− E[MV | A = 0, δ = 0, L, ω1:n, θ1:n, λ0]
)
dP (L)

(3.3)

Details are provided in the Appendix B.1. Above, we have explicitly written Ψ = Ψ(ω1:n, θ1:n, λ0) as

a function of the parameters governing the joint cost-effectiveness distribution. This is to highlight

that a posterior distribution over these parameters induces a posterior on the the causal estimand

Ψ. Let each expectation in (3.3) be denoted as µ(a, 0) = E[MV | A = a, δ = 0, L, ω1:n, θ1:n, λ0].

Then,

µ(a, 0) =

∫ τ

0

∫ ∞
0

(Dκ− Y )p(Y, T | L,A = a, δ = 0, ω1:n, θ1:n, λ0)dY dD (3.4)

Where this inner integration is over the joint model we presented in (3.1) with Xi = (Ai, Li). Note

that conditional on δ = 0, T = D in the joint model and we integrate along the time up until τ -

resulting in τ -period monetary value. This integration can be done efficiently via Monte Carlo (see

Appendix B.2).

The outer integration over L in (3.3) requires an estimate of P (L). To avoid strong parametric

assumptions, we use a Bayesian bootstrap (Rubin, 1981). That is, we express p(L) as a discrete

distribution with mass pi at the ith observed confounder vector Li. Specifically, p(L = l) =
∑n
i=1 pi ·

δLi(l). Here δLi is a point-mass at Li. The Bayesian bootstrap follows from an improper Dirichlet

prior on the weights, p1:n = (p1, . . . , pn) ∼ Dir(0, . . . , 0). This yields a conjugate posterior p1:n |

L ∼ Dir(1, . . . , 1) with n−dimensional posterior mean vector E[p1:n | L] = (1/n, 1/n, . . . , 1/n).

At the end of the mth iteration of updates from Section 3.3.2, we have a set of parameter draws

{ω(m)
1:n , θ

(m)
1:n , λ

(m)
0 }, which we can use to construct a posterior draw of monetary value µ(m)

i (a, 0) =

E[MV | A = a, δ = 0, Li, ω
(m)
i , θ

(m)
i , λ

(m)
0 ]. We then take a draw p

(m)
1:n from the Dirichlet posterior

and construct a draw of the confounder distribution p(m)(L = l) =
∑n
i=1 p

(m)
i · δLi(l). Substituting

both of these into (3.3), yields a draw from the posterior of Ψ

35



www.manaraa.com

Ψ(m) ≈
n∑
i=1

p
(m)
i

(
µ

(m)
i (1, 0)− µ(m)

i (0, 0)
)

(3.5)

Repeating for iterations m = 1, . . . ,M yields M draws from the posterior of the causal τ -period

NMB: {Ψ(m)}1:M . The mean of these draws can serve as a Bayesian nonparametric point estimate

of Ψ and percentiles of the M draws can be used to form credible intervals.

The posterior draws can also be used to compute a point on the CEAC for each κ, P (NMB >

0 | D) ≈ 1
M

∑
m I(Ψ(m) > 0). We note that, from this Bayesian perspective, each point on the

CEAC is a posterior p-value or tail-area probability. If individual-specific estimates are required,

Equation (3.4) can be evaluated for particular Li under both treatments using each of the m pos-

terior parameter draws. The difference would be a draw from the posterior of Ψi = NMBi(κ),

denoted Ψ
(m)
i = µ

(m)
i (1, 0) − µ

(m)
i (0, 0). In the causal literature, these are variously referred to

as conditional average treatment effects (CATEs) or individual treatment effects (ITEs). Across M

iterations, we would also have subject-level credible intervals for Ψi. The left panel of Figure 3.2

visualizes posterior mean and intervals for each Ψi using an illustrative synthetic example.

3.5. Adaptive Subgroup Discovery

The MCMC scheme of Section 3.3.2 yields posterior draws of latent cost-effectiveness cluster mem-

bership, {c(m)
i }1:M . In this section, we propose using these draws to adaptively discover subgroups

of patients with different cost-effectiveness profiles. This is “adaptive” in the sense that the number

of clusters is not pre-specified, but grows or shrinks as the model adapts to the data complex-

ity. Subgroup discovery is a policy-relevant endeavor since current CEA practice tends to focuses

on marginal, population-level analyses - even if there is significant variation in the target popula-

tion. Existing approaches to heterogeneity Athey and Wager, 2019; Hahn, Murray, and Carvalho,

2020; Henderson et al., 2018 focus on computing ITEs and use post-hoc heuristic procedures to

characterize this heterogeneity across pre-defined subgroups - rather than proposing subgroups

adaptively.

Using the given MCMC outputs for subgroup discovery is challenging for two reasons. First, the

vector of cluster assignment labels, c(m)
1:n , have no meaning across MCMC iterations - making it

difficult to determine the posterior mode partition. This is known as label switching (Stephens,
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2000). To illustrate, consider that a new cost-effectiveness cluster forms in iteration m + 1 and all

subjects previously in another cluster are re-assigned to this new cluster. In this case, even though

the assignment has changed, the underlying composition of the cluster did not. As a solution, we

propose to keep track of the n× n adjacency matrix C(m), where the ijth element, C(m)
ij , is a binary

indicator of subject i and j being in the same cost-effectiveness cluster at iteration m. Note that this

is just the vector c(m)
1:n re-arranged into a matrix. Taking the elementwise mean of this matrix across

the m posterior draws yields a probability matrix P = (1/M)
∑
m C(m) where ijth element, Pij , is

the posterior probability of subject i and j being in the same cost-effectiveness cluster. To get a

hard clustering assignment, we then search draws, {c(m)
1:n }1:M , for the assignment that is “closest” to

P. That is, we search for c∗1:n = arg minm ||C(m)−P||, where || · || is some matrix norm. As in earlier

papers on Bayesian clustering, here we adopt “Binder’s Loss” || · || =
∑
i,j(C

(m)
ij − Pik)2 (Binder,

1978; Dahl, 2006). This essentially approximates the posterior mode of the EDP-induced partition,

P. The middle panel of 3.2 visualizes P from an illustrative synthetic example as a weighted

graph where each subject is a node and the length of vertices connecting two nodes are inversely

proportional to Pij . Subjects with low posterior probability of being in the same cost-effectiveness

cluster are far apart on the graph. Such figures are good tools for assessing uncertainty in posterior

mode assignments, c∗i . For instance, the points between the group of dark red and blue clusters

represent subjects with highly uncertain mode assignments. The covariate effects of these subjects

look just as similar to the well-separated dark blue points as they do to the well-separated dark red

points.

A second challenge with using the assignments for subgroup discovery is that the EDP clusters are

not explicitly designed to cluster on NMB. The clustering is driven by the complexity of the joint

cost-effectiveness distribution. This is necessary for a flexible joint distribution estimate, but may

not translate into meaningful NMB clusters. For instance, consider a bimodal cost-effectiveness

distribution with two groups having very different mean costs. However, the difference in costs be-

tween treatment groups in both clusters may be the same. In this case, the EDP will likely introduce

two clusters with similar NMBs. This begs the question: are the clustering results detecting sub-

groups with different cost-effectiveness profiles? To answer this question, we propose a posterior

Differential Subgroup Index (DSI) that, at each MCMC iteration, computes the proportion of the

total variation in the ITEs, Ψ
(m)
i , that is explained by the cluster partition in that iteration. First, de-
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Figure 3.2: Clustering results from EDP-GP fit using synthetic data with two latent cost-
effectiveness clusters. Here, EDP-induced clusters on the joint distribution capture differences
in NMB. The left panel shows posterior point and 95% interval estimates Ψi (with κ = 1). Colors
indicate posterior model cluster assignment, c∗1:n. The middle panel visualizes the posterior prob-
ability matrix P. The right panel is the posterior distribution of DSI - indicating that about 70% of
the variation in subject-level Ψi is explained by the EDP clustering. However, this need not be the
case. The EDP clusters may be capturing complexities unrelated to NMB. While this is desirable to
obtain a good fit to a complex distribution, it means the clusters have no substantive meaning. The
DSI is necessary to distinguish between these scenarios.

fine the mean NMB in subject i’s cluster at iteration m: Ψ̄
(m)
i = 1∑

j I(c
(m)
j =c

(m)
i )

∑
j|c(m)

j =c
(m)
i

Ψ
(m)
j .

Then the DSI measure is,

DSI(m) =

∑
i

(
Ψ̄

(m)
i −Ψ(m)

)2

∑
i(Ψ

(m)
i −Ψ(m))2

(3.6)

This intuitively plays the same role as a regression R2 statistic. Across the m iterations, we have

a set of draws for this statistic, {DSI(m)}1:M , which reflects our uncertainty about how well the

clustering is capturing heterogeneity in NMB. A posterior distribution for DSI concentrated near 1

suggests that the EDP-induced clustering explains nearly all of the variation in the subject-specific

NMBs. This implies that the EDP-induced clustering at the joint cost-effectiveness level is cap-

turing variation at the NMB level. The right panel of 3.2 plots the posterior distribution for DSI

for an illustrative synthetic example generated with two cost-effectiveness clusters. We can then

summarize our data along the mode partition, c∗1:n. For instance, in the synthetic example, we

can create a table summarizing the observed costs, survival, and covariate distributions of the two

identified clusters. These can be used to motivate future cost-effectiveness studies targeting these

subgroups. The DSI also provides context for our marginal posterior estimate, Ψ. A high DSI indi-

cates that a marginal estimate is not capturing substantial treatment effect heterogeneity detected

by the EDP posterior.
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3.6. Assessing Frequentist Properties via Simulation

In this section we report results of several simulation experiments exploring the frequentist proper-

ties (i.e. bias, coverage, and precision) of our posterior mean and interval estimates for Ψ under a

variety of settings. These results are reported in Table 3.1. We simulate data with one continuous

confounder, four binary confounders, and a binary treatment. We simulate survival times conditional

on treatment and confounders from a Weibull distribution. Survival times are censored by censoring

times that also follow a covariate-dependent Weibull distribution. We simulate an outcome from a

true Y distribution of either a Gaussian or Log-Normal, with confounder- and treatment-dependent

means. Data were simulated under low (5%) and high (20%) covariate-dependent censoring. For

each of these, we simulate under a parametric and bimodal setting. Under the parametric setting,

the joint distribution is unimodal - leading to a simple joint cost-survival distribution. Under the bi-

modal setting, we simulate data from a mixture of two cost-effectiveness distributions, each having

different covariate effects in the cost and survival time models. In each of these eight settings,

we simulate 200 datasets with 1500 subjects each. Details about the data generation are given in

Appendix B.3.

We include the doubly-robust estimator (DR-SL) of Li et al., 2018 as a comparator. This approach

involves estimating separate models for conditional mean cost and conditional mean survival time

via super learner. Predictions from these models are weighted by the product of the inverse prob-

ability of treatment and inverse probability of censoring. We estimate the former using a correctly

specified logistic regression - which suggests the DR estimate will be consistent but may still have

substantial bias in finite samples if the models are inadequate. For the latter, we note that Li et

al. did not consider the covariate-dependent censoring in their analysis. Instead, they estimate the

probability of censoring in both treatment groups separately via Kaplan-Meier. Li et al. suggest

using a discrete-time failure model in situations with covariate-dependent censoring. Here, we con-

tribute to the literature by implementing this suggestion using a logistic regression. In the super

learner libraries, we include regression trees, generalized additive, linear models, as well as elastic

net generalized linear model (GLMnet). As recommended by Li et al., we using the bootstrap BCa

interval for inference.

For the EDP-GP, we run using independent Gaussian base distributions forG0 that are null centered
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Table 3.1: Simulation Results. Average bias of posterior mean NMB (as discussed in Section 3.4 )
along with coverage and average width of 95% credible/confidence interval (CI) is reported for EDP-
GP model. Point estimate is reported for DR-SL along with coverage and width of 95% bootstrap
BCa interval. Bias is reported as a proportion of the truth. Censoring rate was 5% in the low setting
and 20% in the high setting. Willingness-to-pay is set to κ = 1. Results are across 200 simulated
datasets with N = 1500 subjects each.

Simulation Setting EDP-GP DR-SL
Y Dist. Joint Dist. Cens. Bias Coverage Width Bias Coverage Width

Gaussian
Parametric Low -0.002 0.94 0.11 -0.001 0.95 0.18

High -0.002 0.97 0.12 0.003 0.95 0.30

Bimodal Low -0.01 0.94 0.13 0.11 0.60 0.64
High -0.01 0.94 0.14 0.16 0.40 0.77

Log-Normal
Parametric Low -0.02 0.92 0.13 -0.001 0.96 0.12

High 0.004 0.96 0.14 -0.01 0.96 0.13

Bimodal Low -0.004 0.98 0.11 0.02 0.94 0.18
High 0.03 0.92 0.12 0.06 0.90 0.20

with flat priors, relative to the data variance. Importantly, we use a local conditional Gaussian

model for Y . We set λ∗0 to an exponential (constant) hazard. Additional details on DR-SL and

EDP-GP settings are provided in Appendix B.3. To summarize, the unimodal setting with Normally

distribution Y is the most favorable setting for our method since the Gaussian data generating

model matches the local Gaussian model we specify. In principle, all of these settings are quite

favorable to the DR-SL method since we correctly specify the propensity score model. The log-

Normal setting is the least favorable to our method since our local Gaussian model is misspecified.

Notice that in all censoring and Y distribution settings, the parametric data generating process

yields low bias and close to nominal coverage for both methods. This is as expected since both

are highly flexible models, they should perform well in simple settings. Note however, that the

models diverge in the more complicated, bimodal setting. In the bimodal log-Normal setting, the

DR-SL exhibits higher bias with a larger interval width relative to EDP-GP. Similarly, in the bimodal

Gaussian setting, the DR-SL model exhibits particularly high bias - 11% and 16% in the low and

high settings, respectively. The main challenge with DR-SL is that the underlying super learner fails

to capture biomodality in the cost-effectiveness joint distribution. In contrast, the EDP partitioning

picks up the bimodality - modeling each mode with separate parameters to attain a better overall

fit. Finally, note that EDP-GP intervals tend to be narrower across settings.
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3.7. Cost-efficacy of Endometrial Cancer Treatment

We apply our BNP method to assess the cost-effectiveness of adjuvant chemotherapy (CT) versus

radiation therapy (RT) for the treatment of endometrial cancer and compare our results to the DR-

SL estimate. The target population of interest are women over the age of 65 who were diagnosed

with endometrial cancer before undergoing hysterectomy. Within three months after hysterectomy,

patients are assigned to either adjuvant RT or CT. We select a cohort of women over the age of

65 who were diagnosed with endometrial cancer between 2000 and 2014 in the SEER-Medicare

database. The first treatment after three months of diagnosis was recorded. A maximum of τ =

24 months of follow-up after hysterectomy was available in this data cut. Total costs accrued by

Medicare (including inpatient, outpatient, hospice, and pharmaceutical costs) were recorded along

with their survival/censoring status. Covariates which are known drivers of treatment assignment

(age, comorbidities, cancer stage) were extracted. Table 3.2 displays summary statistics for the

sample. Notably, the 2-year survival is slightly lower in the CT arm (93% vs. 94.5%), and average

total costs higher in the CT arm (51.3 vs. 42.6). This suggests worse cost-effectiveness for CT

relative to RT. However, there is significant uncertainty associated with these numbers that should

be quantified. Moreover, the cohorts differ substantially in terms of observed characteristics at

treatment assignment. For instance, the radiation arm has a greater proportion of patients with

baseline International Federation of Gynecology and Obstetrics (FIGO) stage of IB - which is more

severe than IA and I-NOS. Similarly, RT harm has fewer comorbidities - with 57% (vs. 54%) having

Charlson Comorbidity Index of zero. These differences could differentially affect adjuvant therapy

assignment and cost-efficacy.

We use our EDP-GP approach to compute posterior point and interval estimates for NMB while

adjusting for differences in observed covariates. We specify the local cost distribution, p(Yi |

Ti, δi, Xi, ωi), to be a log-normal distribution with parameters ωi = (βi, φi). The local regression

is

E[Yi | Ti, δi, Ai, Li, ωi] = exp
{

(1, Li, Ai, Ti, δi)
′βi + φi/2

}
This local log-normal distribution respects the non-negative nature of costs, while allowing us to

capture skewness. In the model, Li includes household income, Charlson index, and FIGO. FIGO

is included as a categorical covariates, while the others are treated as continuous. We let A = 1
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Table 3.2: Sample Characteristics: Mean and sample standard deviations reported for continuous
covariates. Counts and proportions reported for categorical covariates. Standardized mean differ-
ences (SMD) are provided. Typically SMD > .1 indicate large differences. Monetary amounts are
in thousands of 2018 U.S. Dollars.

Radiation Chemotherapy SMD
(N= 3,827 ) (N= 245 )

Total Accrued Costs ($) 42.6 (36.8) 51.3 (39.7) .23
2-yr Survival Prob. 94.5 93.0
Age (years) 73.6 (6.2) 73.2 (6.3) .06
Household Income ($) 60.3 (28.8) 65.6 (34.0) .17
Charlson Index .12

0 2176 (56.9) 131 (53.5)
1 1056 (27.6) 65 (26.5)
2 342 (8.9) 30 (12.2)
≥ 3 253 (6.6) 19 (7.8)

FIGO Stage .5
I-NOS 353 (9.2) 23 (9.4)
IA 1162 (30.4) 128 (52.2)
IB 1780 (46.5) 64 (26.1)
II/II-NOS 532 (13.8) 30 (12.2)

indicate assignment to chemotherapy with radiation being reference.

We set prior G0 as discussed in Section 3.3.3: G0ω(βi, φi) = N(β̂, Σ̂)IG(a0, φ̂(a0− 1)). Here, β̂ are

OLS estimates using log(Y ) as the outcome and Σ̂ = diag(1, .012, . . . , .012). Note the latter appears

overly informative, but is actually fairly wide on the exponentiated scale. That is, a prior variance of

1 implies that mean costs as large as exp(1 · 1.96) ≈ 7 times the empirical mean cost are plausible.

Similarly, a prior variance of .01 implies covariate effects of as large as 2% = 1− exp(1.96 ∗ .01) are

a priori plausible in the absence of data. For φ, note that the variance of the log-Normal random

variable, Z, is V ar[Z] = (eφ − 1)E[Z]2, which implies φ = log[V ar[Z]/E[Z]2 + 1]. This motivates

setting φ̂ = log[ŝ2/ȳ2 + 1], where ŝ2 and ȳ are the marginal variance and mean of the observed

cost values. We set a0 = 1000, which anchors the prior around the empirical estimate. For the

effectiveness model we again follow Section 3.3.3 and set G0θ(θi) = N(θ̂PH , I). We center the GP

priors around an empirical estimate λ∗0(t) = λ̂ ≈ .001 with b = 2000 and ξ = 4000. Here, ξ is on the

order of the sample size - signifying strong AR(1) smoothing. The value b is about half of ξ - putting

equal a priori weight on the prior hazard λ∗0(t) and the previous hazard at time t− 1.

We run three MCMC chains in parallel for 5,000 iterations and discard the first 3,000 draws of each

chain as burn-in. We initialize each chain with different numbers of initial cost and effectiveness
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Figure 3.3: Posterior estimates of (left panel) NMB for various willingness-to-pay for each additional
month of survival, κ. The posterior distribution of DSI in (middle panel) shows that about 15% of
the variation in the individual-level NMBs is explained by the EDP induced clustering. This suggests
the treatment effect may be relatively homogeneous and the NMB is a good overall average effect
measure. The right panel plots the posterior baseline hazard curve along with 95%, 90%, and 80%
credible bands in successively darker shades. Notice that posterior estimate is smoother version
of the empirical estimate hazard in red. It is a posterior compromise between the empirical hazard
and the prior constant hazard.

clusters and check that the chains converge to each other regardless of this initialization. This

yields a total of 6,000 draws which we use for posterior inference. Other details and assessments

of convergence are provided in Appendix B.4.

We estimate a 2-year NMB of chemotherapy over radiation to be −$14.5 thousand, with 95% CI

[−$16.6,−$12.7]. This assumes a willingness-to-pay of about κ = $4167/month, or $50, 000/year of

life gained - which is standard in cost-effectiveness analyses. This is roughly consistent with the

unadjusted comparison in Table 3.2, where average total costs among chemotherapy patients was

higher by about $9, 000. The left panel of Figure 3.3 shows average NMB as a function of κ for

various κ values. Recall that by definition NMB is a linear function of κ. The intercept at κ = 0

shows an NMB that captures differences in cost only (efficacy has zero value). The negative y-

intercept here reflects that even if we do not value efficacy, chemotherapy is more expensive than

radiation after covariate adjustment. The negative slope of the curve reflects that adjusted efficacy

(i.e. survival benefit) of chemotherapy is lower. However, the slope here is quite small, suggesting

a very small difference in efficacy. This is consistent with unadjusted results - recall from Table 3.2

that 2-year survival is slightly lower among chemotherapy patients.

In terms of clustering, we compute c∗1:n as given in Section 3.5 and find that about 86% of the

observations are grouped into two posterior mode clusters. However, in the middle panel of Figure
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3.3 we see that only about 15% of the variation in the individual-level NMBs is explained by the EDP-

induced partition - which suggests these clusters are not very meaningful for cost-effectiveness.

This indicates low posterior evidence of treatment effect heterogeneity, suggesting average NMB

may fairly characterize the cost-effectiveness profile. Finally, the right panel of Figure 3.3 shows

the posterior estimate of the baseline hazard. Since continuous covariates were normalized, this

represents the hazard among patients with average household income and age with Charlson index

of zero and FIGO II/II-NOS. This has no explicit causal interpretation but is illustrative of the Gamma

process. Notice our posterior has moved away from the constant hazard prior and towards the

empirical (Nelson-Aalen) estimate shown in red. The informative AR(1) shrinkage results in a

smoother posterior curve that penalizes large swings in the empirical hazard.

For comparison, we also ran the DR-SL approach where propensity score model, mean survival

time model, and mean cost model were all estimated using super learner. Regression trees, GLM-

net and GLM were included as candidate learners and 95% BCa intervals were estimated using

5,000 bootstrap iterations. For willingness-to-pay κ = $4167/month, DR-SL estimates a 2-year av-

erage NMB of −$11.8 with 95% CI [−$19.1,−$6.0] in thousands. This is similar to our estimate

of −$14.5 [−$16.6,−$12.7], but the DR interval is wider. More details on the DR-SL implementa-

tion are given in Appendix B.4, including a full plot of average NMB from DR-SL as in Figure 3.3.

For even large willingness-to-pay values of up to 300 thousand USD per year, both approaches

find a negative NMB with intervals excluding zero. This supports the relative cost-effectiveness of

radiation over chemotherapy adjuvant therapy over two years.

3.8. Discussion

Cost-effectiveness is statistically challenging due to the complexities of the joint distribution of cost

and survival time, such as skewness, censoring, and multi-modalities. Moreover, estimation of

policy-relevant estimands with causal interpretation is complicated by confounding in observational

studies. Robust causal inference for cost-effectiveness requires flexible modeling that accounts

for these complexities while adjusting for confounders. In this paper, we outlined a nonparametric

Bayesian solution that leverages the Gamma and enriched Dirichlet process priors to model the

joint distribution of cost and survival time. We proposed cost-effectiveness estimands with causal

meaning and identified them under suitable causal assumptions. We showed how our model can
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be used in a Bayesian g-computation procedure that draws from the posterior of the causal effect.

Finally, we show that the partition induced by the EDP can be used to explore cost-effectiveness

heterogeneity and introduced the DSI diagnostic statistic for assessing how well this partition cap-

tures heterogeneity.

In simulations, we demonstrated that our procedure has adequate frequentist properties (bias,

coverage, etc.) in a variety of scenarios. In complex settings, it can be comparable and, at times,

outperform existing doubly-robust methods. Across almost all settings, the EDP-GP produces NMB

estimates with narrower interval widths relative to the DR-SL estimates. In the data analysis, the

DR-SL approach also yields wider intervals. One driver of this is the relative inefficiency of the

DR-SL approach. This method only uses data from patients who are not censored and weights

their contributions by the inverse probability of being uncensored. In contrast, our method uses

censored patients, since they still inform the total cost distribution at their observed time. Another

feature with the DR-SL is that it is a weight-based estimator (weighted both by inverse probability

of treatment and censoring), which are known to be quite variable if the probability of treatment are

near the bounds within subgroups. Since the EDP-GP approach is model-based, it provides more

smoothing under these conditions. Finally, the bootstrap inference procedure used in the DR-SL

approach can be difficult to implement in practice, where sparsity among categorical covariates

leads to the occasional pathological bootstrap resample (e.g. with rank deficient matrix). This is in

contrast to full posterior inference via the Bayesian bootstrap which can be more stable.

Finally, we see at least two avenues of future work and extensions. First, in our paper, we con-

sider a setting with a single baseline treatment. This allows us to estimate the cost-effectiveness

of baseline treatments, which are highly relevant in many settings. However, we may also wish to

estimate the cost-effectiveness of time-varying treatment regimes, in addition to the effect of the

initial baseline treatment. Flexible causal estimation in these settings is more complex and should

be explored. Second, there has been much work on improving the computational scalability of pos-

terior inference on Dirichlet process models, including both approximate inference via Variational

Bayes and parallel MCMC procedures. Future work developing scalable inferential procedures for

joint-modeling with EDPs can be useful.
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CHAPTER 4

THE HIERARCHICAL BAYESIAN BOOTSTRAP FOR HETEROGENOUS TREATMENT

EFFECT ESTIMATION

4.1. Introduction

Estimation of heterogeneous treatment effects - i.e., effects within strata of some other relevant

variable - is popular in causal inference. These estimands are especially relevant in scenarios

where treatment effects vary substantially in the population. In these scenarios, an overall estimate

averaged across strata may suggest a negligible treatment effect even if there is substantial benefit

within a particular stratum. Such effects can be identified under rather standard causal assumptions

(no unmeasured confounding, positivity, etc.) and computed using standardization in the point-

treatment setting. Within each stratum, standardization involves averaging a stratum-specific re-

gression model adjusting for confounders and treatment over the distribution of confounders within

that stratum. Fully Bayesian approaches to standardization, and causal estimation broadly, have

been growing in popularity. For instance, BART regression models were used in early work by Hill

(2011) to compute marginal effects and subsequently by Zeldow, Lo Re III, and Roy (2019), Hahn,

Murray, and Carvalho (2020), and Henderson et al., 2018 to compute individual treatment effects.

Other Bayesian nonparametric (BNP) priors such as Dirichlet process (DP) and variations such as

the enriched DP and dependent DP regressions have also been used to do full posterior inference

on marginal treatment effects. For instance, such methods have been developed for computing ef-

fects under zero-inflation (Oganisian, Mitra, and Roy, 2020), in the presence of missingness, (Roy

et al., 2018), in mediation scenarios (Kim et al., 2017), for censored survival outcomes under com-

peting risks (Xu et al., 2020), and to compute causal quantile effects (Xu, Daniels, and Winterstein,

2018).

To perform standardization, regression models must be averaged over the confounder distribution

of the target population. For instance, Hill averages the BART over the empirical distribution when

computing marginal effects. This is a flexible approach as it makes no modeling assumption about

the distribution. However, it is unsatisfying from a Bayesian point of view since it uses a fixed

plug-in estimate and variability of this estimate does not flow through to the posterior of the causal
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effects. To address this, Wang et al. (2015) and Nethery, Mealli, and Dominici (2019) used the

Rubin’s Bayesian bootstrap (BB) (Rubin, 1981). Broadly, this approach models the confounder

distribution as a point-mass distribution with unknown mass/weight at each observed confounder

value. Posterior inference is done on these unknown weights and variability propagates through to

the causal effects of interest.

The popularity of the BB for marginal estimation has lead to its adoption for heterogenous average

treatment effect (HTE) estimation. These are average treatment effects within strata of some other

variable. For instance, Roy, Lum, and Daniels (2017) evaluate the effect of antiretroviral therapy

on various outcomes among HIV-positive patients with and without recent alcohol use. They use

independent BBs to estimate the confounder distributions of recent alcohol users and non-users

separately. Taddy et al. (2016) are concerned with estimating effects of a large A/B testing experi-

ment among “new” and “old” platform users. Again, these use separate BB estimates within these

two strata. More recent work by Boatman, Vock, and Koopmeiners (2020) attempts to do causal

estimation in a setting where data are collected from several “supplemental sources” in addition to

a “primary” data source. They then estimate a causal effect within the “primary” stratum by aver-

aging a BART regression over a BB estimate of the confounder distribution in the primary source,

separate from the other sources.

Though common, using separate BBs for HTE estimation is not ideal - especially when some strata

are sparse. For instance, in our motivating data analysis we target the marginal effect of proton

versus photon chemoradiotherapy on adverse event risks. The question of interest is how the effect

varies across different cancer types for which chemoradiotherapy is the standard-of-care. This is

complicated as some cancer types (e.g. lung) may be rare in the sample, giving us little data

on the confounder distribution within these strata. By construction, the BB places zero mass on

confounder values unseen within this stratum - even if this is due to small samples and not due to

an a priori belief that unseen values are impossible. While plausible covariate values for lung cancer

patients may have been observed for, say, brain cancer patients, stratum-specific BBs have no way

of borrowing this information. Our main contribution is the construction of a hierarchical Bayesian

bootstrap (HBB) prior for estimating stratum-specific confounder distributions in precisely such a

setting. Based on the Hierarchical Dirichlet Process (HDP), our approach allows for a principled

borrowing of confounder information across strata. For large strata, the HBB posterior shrinks to the
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stratum-specific BB. For small strata, it is shrunk more heavily towards values seen in other strata.

This approach (1) maintains the flexibility of the BB (we make no parametric assumptions about

the confounder distributions), (2) provides room for efficiency gains via the induced shrinkage, and

(3) is fully conjugate and agnostic to the choice of outcome model. This last property makes it

compatible for several of the popular outcome modeling approached mentioned earlier.

Several notable modifications to the bootstrap have been proposed which are distinct from our

work. For instance, Makela, Si, and Gelman (2018) developed a two-stage Bayesian bootstrap

for a cluster-randomized study setting. Here, clusters/strata are sampled and then individuals are

sampled within a cluster. A key problem here is how to account for strata that exist, but are never

sampled. This is distinct from our problem where strata are known and fixed and the issue is to

borrow information across them. Approaches such as “bag-of-little bootstraps” (Barrientos and Pea,

2020; Kleiner et al., 2014) have been proposed with the goal of scaling bootstrap to large datasets.

The idea run separate bootstraps on sub-samples, then combine in such a way as to approximate

the overall bootstrap distribution. However, we are not concerned with estimating the overall data

distribution, but stratum-specific distributions. Finally, several “smoothed” bootstraps have been

developed (Efron and Gong, 1983; Silverman and Young, 1987; Wang, 1995). The view here

is that the Efron’s bootstrap is sampling from the empirical distribution that places uniform mass

on each observed data value. This point-mass distribution is convoluted with a kernel to induce

smoothness. While indeed a step in the right direction, it is unsatisfactory from the perspective of

HTE estimation. We could, for instance, estimate stratum-specific smoothed bootstrap distributions.

This will indeed place some mass on the unseen values, but this mass is allocated via an ad-hoc

kernel, rather than informed by data in the other strata. Specification of this kernel is also a hurdle,

which BB does not face. As we will see, however, we can provide a probabilistic motivation for the

smoothed bootstrap as an improper case of the HBB.

In the next section, we introduce some notation and motivate the causal problem more precisely

before outlining the HBB and related computation. After, we will discuss simulation studies assess-

ing the performance of the HBB relative to dominant approaches in the causal literature under a

variety of settings. We end with an analysis contrasting the risk of adverse events for proton versus

photon therapies across various cancer types.
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4.2. Background and Motivation

Suppose we observe outcome Y for subjects assigned to treatment A ∈ {0, 1} along with some

confounders L = (W,V ) that are measured pre-treatment. These are variables which we believe to

be drivers of both treatment and outcome. In the HTE setting, this set often consists of V - a discrete

variable taking on values v ∈ {1, 2, . . . ,K} along which we wish to make causal comparisons - and

variables W which we would like to average over. The levels of V are sometimes constructed

using multiple covariates - e.g. V marking all combinations of discrete V1 and V2. Using potential

outcomes notation (Rubin, 1978), one popular causal estimand is the heterogeneous, or stratum-

specific, average treatment effect (HTE) Ψ(v) = E[Y 1 − Y 0 | V = v] - the average difference in

outcomes had everyone in the stratum V = v taken treatment 1 versus 0. Note this is distinct from

the target of individualized treatment effect (ITE) estimation, which are individual-level effects.

While we could estimate E[Y | A = a, V ] with observed data, in general E[Y | A = a, V ] 6=

E[Y a | V ]. That is, the average outcome among subjects treated with A = a in V may not be

the same as the average outcome had everyone in V taken treatment A = a. This is due to

confounding: treated subjects may be a non-representative subset of the patients in stratum V (e.g.

systematically sicker and, therefore, more likely to have worse outcomes). Under well-known causal

identification assumptions, we can estimate Ψ(v) by integrating the difference in stratum-specific

outcome regressions over the conditional distribution of W (see Web Appendix A in Supporting

Information)

Ψ(v) =

∫
W

{
E[Y | A = 1, V = v,W ]− E[Y | A = 0, V = v,W ]

}
dPv(W ) (4.1)

where Pv(W ) = P (W | V = v). This formula is known as standardization - a special case of the

g-formula (Robins, 1986) in the point-treatment setting. The same general approach can be used

to compute an overall average treatment effect (ATE) Ψ = E[Y 1 − Y 0] by integrated the outcome

regression over the joint P (L) = P (W,V ). The estimand Ψ(v) is more relevant than Ψ in settings

where, due to variability within the population, the ATE is not a meaningful measure of the treatment

effect.

Suppose we observe n independent subjects with data, D = {Yi, Ai,Wi, Vi}1:n. Let Sv = {i : Vi =

v} contain the indices of subjects in stratum V = v and let nv denote the cardinality of Sv such that

49



www.manaraa.com

n =
∑
v nv. Bayesian inference typically proceeds by obtaining a posterior over E[Y | A, V,W ] and

Pv(W ) which together induce a posterior over the target Ψ(v). As discussed in the introduction,

many BNP models exist for the former. Efficient estimation of the latter via the HBB is the chief

objective of this paper, but first we review some popular alternatives. One approach is to plug in the

empirical distribution P̂v(w) = 1
nv

∑
i∈Sv δWi

(w) - where δx(·) denotes the degenerate distribution

at x. For compactness we sometimes denote these as simply Pv and δx. This places uniform mass

of 1/nv on each confounder vectors observed in stratum v.

To our knowledge, Wang et al. (2015) first proposed using Rubin’s Bayesian bootstrap (BB) (Rubin,

1981) over this empirical approach and it has since become popular as it accounts for variability

in the empirical estimate (Nethery, Mealli, and Dominici, 2019; Saarela et al., 2015; Xu, Daniels,

and Winterstein, 2018). To summarize the BB, it models the covariate distribution as Pv(w) =∑
i∈Sv π

v
i δWi

(w), but unlike the empirical approach the weights, πv = {πvi }i∈Sv , are considered

unknown parameters that completely determine Pv. A prior over these these weights is then a prior

over Pv. Noting that the weight vector lives in the simplex, πv ∈ {Rnv : πvi > 0 ∀i ∈ Sv,
∑
i∈Sv π

v
i =

1}, BB places an improper Dirichlet prior over this space πv ∼ Dir(0nv ), where 0nv is the nv-

dimensional zero vector. This is a conjugate model with posterior πv | {Wi}i∈Sv ∼ Dir(1nv ), where

1nv is the nv-dimensional vector of ones. Note that this is done for each V = v, separately. This

is the approach used for HTE estimation in the Bayesian causal inference literature by Boatman,

Vock, and Koopmeiners (2020), Roy, Lum, and Daniels (2017), and Taddy et al. (2016). This

common approach does have several advantages. First, it retains the flexibility of the empirical

distribution. Note that the posterior expectation of each πvi is 1/nv. Second, unlike the empirical

estimate, variability in this estimate flows through to the posterior of Ψ(v) since the weights are

not fixed at 1/nv. Third, it is computationally easy to sample due to conjugacy and, fourth, it is

agnostic to the choice of outcome model. However, it becomes problematic for sparse strata where

few values of W are observed. Under the BB, Pv assigns zero probability to values of W that are

unseen in stratum v. This is undesirable because there are many values that we may think are a

priori plausible. Indeed, we may observe such values in other strata. Since the BB estimates of Pv

are done independently, the posterior estimate of Pv cannot borrow this information - yielding less

stable estimates of Ψ(v). In essence, the proposed HBB retains these desirable properties of the

BB while addressing the small-strata shortcomings by “partially pooling” the estimates of Pv.
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4.3. The Hierarchical Bayesian Bootstrap

Let W v = {Wi}i∈Sv denote the observed confounders in stratum v and let W = {W v}v=1:K denote

the full set of confounders. We model W v as following an unknown distribution W v | Pv ∼ Pv

and propose a prior for Pv that borrows information across V . The DP is a stochastic process

that generates random, discrete distributions. Due to its flexibility and conjugacy, it has become a

popular prior for unknown distributions in Bayesian analysis. Suppose we place a DP prior on each

Pv, denoted Pv ∼ DP (αP0v). The realizations of Pv are centered around a “mean” distribution of

P0v, with α > 0 controlling the dispersion of these realizations around P0v. This is flexible because

the posterior of Pv under a DP is a compromise between the prior mean, P0v, and the empirical

distribution in stratum V = v,
∑
i∈Sv δWi

(w), with relative weight controlled by α. However, each

Pv is centered around its own P0v, preventing any borrowing of information across strata. This

motivates the hierarchical DP (HDP) of Teh et al. (2006), which centers the Pv around a common

mean distribution P0 and adds a DP hyperprior on P0. We note that while the following development

may seem rather involved, the actual posterior computation will be fully conjugate and efficient.

Under the HDP prior, the full model for the covariates is

Wi | Pv ∼ Pv for i ∈ Sv

Pv | α, P0 ∼ DP (αP0) for v = 1, . . . ,K

P0 | γ, P∗ ∼ DP (γP∗)

(4.2)

The DP hyperprior on P0 implies that the random P0 are discrete - allocating mass to atoms. Due

to this discreteness, the distributions Pv have support on the same atoms as P0 but allocate mass

differently across these atoms in a way that is local to V . Since the DP is conjugate, the posterior of

Pv conditional on P0 is another DP: Pv | P0, α,W
v ∼ DP (αP0 +

∑
i∈Sv δWi

). Similarly the marginal

posterior of P0 is also a DP: P0 |W ∼ DP (γP∗ +
∑n
i=1 δWi). For the Hierarchical BB, we set γ = 0

in (4.2) and denote this prior on Pv as Pv | α ∼ HBB(α). This yields posterior under the HBB(α)

Pv | P0, α,W
v ∼ DP (αP0 +

∑
i∈Sv

δWi
)

P0 |W ∼ DP (

n∑
i=1

δWi
)

(4.3)
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With γ = 0, P0 are random distributions centered around the empirical distribution P0 | W ∼

DP (
∑n
i=1 δWi

) This distribution is discrete with an atom at each of the n observed Wi. A P0

can be drawn from this posterior by drawing a vector of weights π1:n ∼ Dir(1n), where π1:n =

(π1, π2, . . . , πn). This draw of P0 can then be represented as P0 =
∑n
i=1 πiδWi . Note that this is

exactly the BB. However, now we have an additional layer of uncertainty as the stratum-specific

distributions must be drawn around this P0: Pv | P0, α,W
v ∼ DP (α(

∑n
i=1 πiδWi

) +
∑
i∈Sv δWi

).

Figure 4.1: Draw from posterior of Pv under prior Pv ∼ HBB(2) with simulated scalar Wi for
n = 90 subjects from V = 1, 2, 3. These 90 atoms are represented by vertical bars with colors
indicating stratum of the atom. The height of the lines represent probability mass drawn from the
HBB posterior. Left panel: a draw of P0 - recall this is centered around the empirical distribution
(i.e. line 2 in (4.3) ). The next panel shows a draw from the Dirichlet Process posterior of Pv
conditional on this draw of P0 - i.e. line one of (4.3). Note that P1, P2, and P3 place positive mass
on all observed atoms. For instance, independent BB estimates of P2 would put place 0 mass on
all atoms but the red - unlike the third panel.

Again, conditional on a draw of P0, each Pv is a discrete distribution with atoms at each of the

observed n points in the entire sample. Combining like terms in the summations, however, we see

that atoms observed in stratum V = v have a weight of απi + 1 - higher than the weight on atoms

unseen in stratum V = v, which is απi. To see this, note that in expectation (over many draws of

Pv), the posterior distribution of W v can be represented as a Pólya Urn (Blackwell and MacQueen,

1973):

Pv(W = w | P0, α,W
v) =

α

α+ nv
(

n∑
i=1

πiδWi
) +

1

α+ nv

∑
i∈Sv

δWi

=
1

α+ nv

{∑
i/∈Sv

απiδWi +
∑
i∈Sv

(1 + απi)δWi

} (4.4)

Again due to the finitely many atoms, we can draw a Pv from this posterior by drawing from an n-

dimensional Dirichlet distribution with the ith concentration parameter being απi for i /∈ Sv and
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1 + απi for i ∈ Sv. Intuitively, this can be seen as adding an additional α subjects from the

marginal distribution into stratum V . These “pseudo-subjects” can take on any observed value

in the marginal, even if they are unobserved in the stratum - thus, borrowing information. As with

the posterior update for P0, a draw from this Dirichlet distribution yields an n-dimensional set of

weights πv1:n and thus a draw of Pv is given by Pv(w) =
∑n
i=1 π

v
i δWi

. Note that in the above we

used a common α across strata. This is without loss of generality, as each stratum can have its

own αv without changing the results. We will turn to specification of these hyperparameters after

discussing computation.

4.3.1. Posterior Computation via MCMC

Here we describe posterior HTE inference under a HBB(α) prior for Pv via Markov Chain Monte

Carlo (MCMC). At each iterations m = 1, . . . ,M , we

1. Obtain a posterior draw of P0 by drawing weights π(m)
1:n ∼ Dir(1n) then forming P

(m)
0 (w) =∑n

i=1 π
(m)
i δWi(w).

2. For each v = 1, . . . ,K, obtain a posterior draw, P (m)
v , conditional on P

(m)
0 . We do this by

drawing π
v(m)
1:n ∼ Dir(η

(m)
n ), where η

(m)
n is the n-dimensional vector with element i being

απ
(m)
i if i /∈ Sv and (1 + απ

(m)
i ) if i ∈ Sv. Note the sum of the elements in η(m)

n is α+ nv. This

now forms a draw of P (m)
v (w) =

∑n
i=1 π

v(m)
i δWi(w).

Now to estimate the HTEs, suppose we also have M posterior draws of the regression E[Y |

A,W, V ], denoted by µ(m)(A,W, V ). This can be from any model. For instance, in a GLM this could

be µ(m)(A,W, V ) = g−1(β
(m)
0 + W ′β

(m)
w + V ′β

(m)
v + β

(m)
A A) where g−1 is the inverse link function.

This could also be a posterior draw µ(m)(A,W, V ) = f (m)(A,W, V ) where f (m) is the posterior draw

of a sum-of-trees model under a f ∼ BART prior. To estimate the HTE, we include a third step

3. Integrate over HBB draw of Pv from Step 2, P (m)
v .

Ψ(m)(v) =

∫
W

{
µ(m)(1,Wi, v)− µ(m)(0,Wi, v)

}
dP (m)

v (W )

=

n∑
i=1

π
v(m)
i

{
µ(m)(1,Wi, v)− µ(m)(0,Wi, v)

} (4.5)
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Repeating this procedure for each of the draws yields a set of M draws from the posterior of Ψ(v),

{Ψ(m)(v)}1:M , for each stratum v = 1, . . . ,K. Note that the Wi from all subjects contribute to

Ψ(m)(v). However, values from the stratum and values outside the stratum are weighted differently

according to πv(m)
i .

4.3.2. Some Limiting Cases and Hyperparameter Choice

Here we consider the limiting behavior of the HBB by analyzing (4.4) conditional on P0(w) =∑n
i=1 πiδWi

and the choice of hyperparameter. Note that for α = 0, the first term in line one of

(4.4) disappears and our estimate reduces to Pv(W = w | P0, α,W
v) = 1

nv

∑
i∈Sv δWi

. This is the

empirical distribution within stratum v and represents a completely unpooled estimate where values

of W unseen in stratum v have no mass. Thus, there is no borrowing of information. This is also

the posterior mean of the BB estimate of Pv. Now consider the other extreme where α >> nv. In

this case (4.4) reduces to Pv(w | P0, α,D) =
∑n
i=1 πiδWi

- the BB estimate of the entire marginal

distribution (over V ) that places expected mass E[πi] = 1/n on each observed value of W in the

entire sample. That, is we have completely pooled all the stratum-specific distributions. The pa-

rameter α controls the posterior compromise between these extremes for a particular stratum. The

idea of partial-pooling is to balance the bias-variance tradeoff, with fully pooled estimates favoring

reduction in variance over potential increase in bias and fully unpooled estimates favoring a reduc-

tion of bias over potential increase in variance. Of course, partial-pooling by its nature may induce

bias, especially if the confounder distributions in the sub-populations are very different. While it

may be tempting to view the introduction of a user-specified parameter α as a limitation, we have

just shown above that the dominant BB approach already makes a very strong prior choice of α = 0

- implicitly favoring the completely unpooled scenario, even if some partial pooling to reduce vari-

ability is sensible. The explicit introduction of α is more sensible as we do not lock users into this

strong prior.

Hyperparameter guidance:

To guide decisions about α, recall that we can interpret α > 0 as adding an additional α pseudo-

subjects from the marginal distribution of W to the nv subjects in stratum v. Higher α places

more weight on the pseudo-subjects - who may have values unseen in stratum V = v (i.e. more

shrinkage towards the marginal). The relative mass on a point seen within the stratum relative
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to an unseen point is approximately ρ = 1+α/n
α/n = n

α + 1. This is seen in (4.4) when substituting

πi with its posterior expectation of 1/n. For example, if we add α = n pseudo-subjects, then on

average the atoms seen in stratum v are about as likely as the atoms not seen in stratum v. This

is fairly aggressive shrinkage. For some M > 0, one option is to set α = n·M
nv

which implies a

relative weight of ρ = nv
M +1. We should now subscript this parameter as αv as it is stratum-specific

depending on nv - but we omit this notation where there is no ambiguity. Here, M is user-specified

and can be interpreted as the minimum desired sample size in each stratum. This may partially be

set depending on the number of confounders we are integrating over and the complexity of the joint

distribution. For instance, with well-behaved, standard joint distribution (e.g. multivariate Gaussian),

M = 30 subjects within a stratum may be sufficient to estimate the distribution. On the other hands,

if the covariates are complex, skewed, and multimodal we may need a larger M to obtain a good

nonparametric estimate such a distribution. Note that strata with size nv << M implies ρ ≈ 1 which

corresponds to heavy shrinkage. Conversely, for large strata with nv >> M , ρ gets larger - placing

increasingly more weight on atoms within stratum v only. This reduces shrinkage proportional to nv.

Figure 4.2 depicts draws from the posterior of Pv under a prior Pv ∼ HBB(nM/nv) with synthetic

data. Note that strata that are more sparse (relative to M ) have distribution draws that are more

heavily shrunk towards the marginal. However, we place positive mass on all points observed in

the sample. While in some ways it could be more satisfying to specify a prior over α, this would

Figure 4.2: Draw from posterior of Pv under prior Pv ∼ HBB(nM/nv) with n = 300 scalar con-
founders simulated for v = 1, 2, 3 strata. Here we set M = 30. Note that for stratum V = 1 we have
far greater observations thanM and so the draw of P1 places most mass on atoms seen in this stra-
tum. Stratum 2 has size slightly larger than M and so places ρ = 58/30 + 1 ≈ 3 times more weight
on atoms seen in the stratum. Stratum 3 only has 10 subjects, and so places ρ = 10/30 + 1 ≈ 1
equal weight on all atoms. This last case represents heaviest shrinkage.

complicate the posterior computation with a non-conjugate update. The existing BB’s popularity
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due in large part to its conjugate Dirichlet updates and keeping α user-specified maintains this

important property.

The smoothed bootstrap as a limiting case:

The smoothed bootstrap has been proposed as one way of placing mass on unseen values ofW . In

this section, we briefly show how this is a limiting case of the HBB(α) prior on a mixing distribution

when α → 0. The smooth bootstrap estimate of Pv is given by P̂v(w) = 1
nv

∑
i∈Sv Kh

(
w−Wi

h

)
.

Smoothness is induced by convoluting a user-specified symmetric kernel, Kh, with the empirical

distribution and the parameter h controlling smoothness. For concreteness, suppose the kernel is

chosen to be standard Normal Kh(w−Wi

h ) = N(w−Wi

h ; 0, 1). Then this bootstrap model is a mixture

of nv kernels centered around each observed Wi with variance h2. The mixing distribution is the

empirical distribution giving weight 1/nv to each mixture component. Now consider a Bayesian

mixture model with unknown mixing distribution Pv, written as P (w | Pv) =
∫
W Kh

(
w−W
h

)
dPv(W ).

Here, W are random with distribution Pv and w is a particular value. With an HBB(α) prior on the

mixing distribution, recall that the mean of Pv is given via the Pólya Urn in (4.4). Plugging this urn

expression in for Pv yields

P (w) =

∫
W
Kh

(w −W
h

){ α

α+ nv
P0(W ) +

1

α+ nv

∑
i∈Sv

δWi
(W )

}

In the improper limit as α → 0, the left term in the Pólya Urn goes to 0. Distributing the ker-

nel and noting that the integral over W is non-zero only at each observed Wi, we get P (w) =

1
nv

∑
i∈Sv Kh

(
w−Wi

h

)
. This is exactly the smoothed bootstrap estimate P̂v. Thus, we have a prob-

abilistic motivation for the smoothed bootstrap via the HBB, formally linking our work with this pre-

vious result. Later in the discussion we elaborate on how this link may motivate future work on a

“smoothed” HBB.

4.4. Simulation Experiments

In this section we assess the behavior of the HBB relative to other approaches under a variety of

settings via simulation. In all settings, we simulate 1000 datasets with n = 300 observations from

K = 4 strata of varying sparsity. On average, the strata counts are n1 = 120, n2 = 90, n3 = 60,

n4 = 30. Thus, stratum 4 is the most sparse stratum and stratum 1 is the least sparse. In each
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simulated data set, we simulate a vector, W , of 10 confounders for each subject conditional on

stratum V . The treatment indicator A itself is simulated as a function of stratum membership and

confounders. We simulate a binary outcome model conditional on V , W , and A from a logistic

model. In the true outcome model, each stratum has a different (conditional) treatment effect,

leading to true HTEs that vary across strata. These represent challenging scenarios with several

confounders and small samples that are often encountered in applied work.

For each simulated dataset, we use a correctly specified Bayesian logistic regression with wide,

null-centered Gaussian priors. This is to focus attention on the confounder distribution models.

After posterior sampling for the regression, we compute a causal risk difference, Ψ(v) = E[Y 1 |

V = v] − E[Y 0 | V = v], by integrating the regression over the confounder distribution model

under both treatment interventions and taking the difference. We integrate over four confounder

distribution models: the empirical distribution, the stratum-specific BB estimate, the HBB, and the

oracle. By “oracle” we mean a Monte Carlo integration over draws from the true stratum-specific

confounder distribution. For the HBB, we set Pv ∼ HBB(nM/nv) with M = 100 in all settings.

We assess the bias, variance, coverage, and precision of posterior estimates for Ψ(1) (the effect in

the least sparse stratum) and Ψ(4) (the effect in the most sparse stratum) across simulation results

in Table 4.1. Additional details about the simulation study can be found in Web Appendix C in

Supporting Information.

In the first setting, we consider a relatively simple multivariate Gaussian generating distribution for

W , which does not vary across V . In this “homogeneous Gaussian” setting, we see little difference

in performance among the 4 methods in the least sparse stratum (V = 1). This is desirable as we

would want the HBB to perform similar to other methods in such populous stratum. In the sparse

stratum (V = 4), the HBB has slightly lower bias with lower MSE (equal up to three decimal places).

Notably, the HBB borrows information across strata to yield, on average, smaller interval lengths

than the BB (.46 v .478) while maintaining nominal coverage of around 95%. Note that the BB

produces a wider interval than the empirical distribution as well (.478 v .459) this is because the BB

accounts for uncertainty in the confounder distribution estimate.

The second setting considers a more difficult scenario where W is marginally generated from a

location mixture of Gaussians. Each W is generated from a 10-dimensional multivariate normal but

with different mean for each stratum. Thus, borrowing information from different strata is expected
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Table 4.1: Simulation results: MSE, absolute bias, empirical variance of the posterior mean along
with the width and coverage of the 95% credible interval across 1,000 simulation runs. MSE is com-
puted as average of the squared difference between posterior mean and truth across simulations.
Empirical variance is computed as the variance of the 1000 posterior means. In general, the HBB
trades off bias for gains in efficiency, leading to overall reduction in MSE for sparse strata. Perfor-
mance is generally similar to BB in more populous strata. The performance is particularly good in
the complicated Gamma mixture setting, where stratum 4 has too few observations from the tail of
the Gamma-distributed W to estimate P4(W ) reliably via BB. The HBB, however, is able to borrow
tail values observed in the other strata.

Model MSE Bias Variance Interval Width Coverage
Setting 1: Homogeneous Gaussian

Stratum 1 Empirical 0.005 0.007 0.005 0.256 0.930
BB 0.005 0.007 0.005 0.260 0.930
HBB 0.005 0.007 0.005 0.258 0.933
Oracle 0.005 0.008 0.005 0.255 0.928

Stratum 4 Empirical 0.013 0.002 0.013 0.459 0.944
BB 0.013 0.002 0.013 0.478 0.951
HBB 0.013 0.000 0.013 0.460 0.948
Oracle 0.013 0.000 0.013 0.457 0.945

Setting 2: Gaussian Mixture
Stratum 1 Empirical 0.005 0.003 0.005 0.261 0.938

BB 0.005 0.003 0.005 0.264 0.939
HBB 0.005 0.007 0.005 0.253 0.941
Oracle 0.005 0.004 0.005 0.259 0.934

Stratum 4 Empirical 0.014 0.003 0.014 0.465 0.949
BB 0.014 0.003 0.014 0.484 0.952
HBB 0.011 0.018 0.010 0.440 0.950
Oracle 0.013 0.000 0.013 0.463 0.957

Setting 3: Bernoulli Mixture
Stratum 1 Empirical 0.007 0.005 0.007 0.310 0.933

BB 0.007 0.005 0.007 0.312 0.936
HBB 0.007 0.012 0.006 0.300 0.930
Oracle 0.007 0.006 0.007 0.310 0.931

Stratum 4 Empirical 0.023 0.010 0.022 0.577 0.953
BB 0.023 0.010 0.022 0.584 0.953
HBB 0.021 0.032 0.020 0.544 0.945
Oracle 0.022 0.011 0.022 0.575 0.95

Setting 4: Gamma Mixture
Stratum 1 Empirical 0.005 0.013 0.005 0.268 0.942

BB 0.005 0.013 0.005 0.272 0.947
HBB 0.006 0.022 0.006 0.288 0.934
Oracle 0.005 0.009 0.005 0.260 0.950

Stratum 4 Empirical 0.032 0.092 0.023 0.587 0.904
BB 0.032 0.092 0.023 0.592 0.907
HBB 0.011 0.002 0.011 0.405 0.943
Oracle 0.010 0.018 0.009 0.371 0.933
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to come at the expense of more increased bias. Indeed, in stratum 4 we see that absolute bias is

about six times higher for HBB relative to BB (.018 v .003), however variation is also reduced (.01 v

.014) leading to about a 20% reduction of MSE (.011 v .014). The HBB interval is narrower relative

to BB (.440 v .484) while maintaining close to nominal coverage. In stratum 1 we see equivalent

MSE across methods.

In the third setting, we consider the case where W is comprised of independent Bernoulli realiza-

tions - with separate probability vectors for each stratum. Each vector can have 210 possible values,

but there are far fewer than 210 observations in any of the stratum. This complicates estimation of

Pv(W ). In the sparse stratum V = 4, we see the HBB has nearly three times higher absolute bias

(.032 v .01) but has reduced variability (.020 v .022). The MSE is reduced by about 8% (.021 v

.023) with the HBB. Notably, the HBB interval is, on average, narrower while maintaining close to

nominal coverage. While, in any stratum, we observe far fewer than the 210 possible values of W ,

the HBB is able to borrow values seen in other strata.

Lastly, in the fourth setting we consider an even more complicated scenario where W is generated

from a 10-dimensional location mixture of Gamma distributions. Each stratum has a different mean

and, importantly, skewness. This scenario is designed to assess the tail-behavior of the HBB. As

shown in Table 4.1, the HBB performs especially well in this complicated scenario. In stratum 4, the

MSE, bias, and variance are lower than the BB. Intervals are narrower and coverage is closer to the

nominal rate (94.3%). The small sample size in stratum 4 leads to too few covariate observations

from the tail of the skewed Gamma to have a reliable nonparametric estimate of P4(W ). This leads

to poor BB estimates. However, in this setting the HBB borrows realizations from the tail in other

strata - leading to a better estimate of P4(W ).

4.5. Adverse Event Risk of Proton versus Photon Therapy

In this section we conduct posterior inference for casual contrasts of proton versus photon therapy

among patients being treated for various locally-advanced cancers. For the cancers under con-

sideration, standard-of-care therapy is a combination of chemotherapy and radiation - known as

concurrent chemoradiotherapy (CRT). However, many modalities of radiation exist. The most com-

mon modality used in CRT has been photon radiation. In recent year, proton radiation therapy has

become more accessible alternative to patients as barriers to access have eased and health sys-
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tems have adopted the necessary technology. The idea of proton therapy is to deliver radiation in

a more targeted way to the cancer site, while being less damaging to healthy tissue relative to pho-

ton. Observational data were collected from n = 1468 adult patients diagnosed with non-metastatic

cancer and treated with CRT at the University of Pennsylvania Health Systems from 2011-2016.

Our data includes assigned treatment to CRT with either proton or photon radiation, several con-

founders measured at the time of treatment initiation, as well as the count of adverse events for a

follow-up period of 90 days after treatment initiation. All patients in the sample had complete follow-

up for at least 90 days. Previous research on this data (Baumann et al., 2020) has focused on the

comparative risk of adverse events for patients on proton versus photon radiation. One hypothesis

is that the more targeted nature of proton therapy will lead to fewer adverse events. Importantly, the

differential risk may vary across cancer types. To address these questions, we conduct two anal-

yses. In the first, we estimate a causal incidence difference between proton and photon patients

across cancer type strata using a Poisson GLM for the adverse event count. In the second, we

estimate of causal odds ratio for risk of any adverse event nonparametrically using BART. In the

process we illustrate how the HBB can be combined with both parametric and nonparametric mod-

els for different outcome types. It can also be used to estimate different marginal causal contrasts

(incidence differences, odds ratios, risk ratios, etc).

4.5.1. Parametric Model for Causal Incidence Difference

In this setting, our outcome is a count of adverse events over the 90-day follow-up, Y ∈ {0} ∪ Z+.

We observe data across K = 8 cancer types (e.g., lung, head and neck, and esophagus/gastric)

indicated by V . Let A = 1 denote proton while A = 0 denote photon. Finally, let W be a vec-

tor of confounders including baseline age, race, sex, body-mass index (BMI), insurance plan, and

charlson comorbidity index (a measure of baseline health status). We specify a conditional Poisson

outcome model with the regression below. We adjust for race, sex, and insurance plan as categor-

ical covariates. BMI, age, and charlson index are included as continuous covariates. More details

on specification and prior choices are given in Web Appendix D in the Supporting Information. The

mean of the Poisson distribution is modeled as E[Yi | Ai,Wi, Vi = v] = exp{βv + W ′iη
v + Aiθ

v}.

Though parametric, such models are common in practice. Note we allow coefficients to vary

across strata. Our target of interest here is the causal incidence difference within each stratum

Ψ(v) = E[Y 1 | V = v] − E[Y 0 | V = v]. A negative value indicates lower incidence of adverse
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Poisson Outcome Models BART Outcome Models

Figure 4.3: Posterior mean and 95% credible interval estimates of stratum-specific causal contrasts
under Poisson model (left) and BART (right). For both models, we set minimum desired sample size
of M = 100. The abbreviations are gynecological (gyn), pancreas/duodenum/hepatobiliary (p/d/h),
esophagus/gastric (e/g), and head/neck (h&n). Similar strata definitions were used in previous
clinical studies (Baumann et al., 2020) and may be justified by anatomical closeness of affected
organs.

events due to proton therapy relative to photon. To obtain this, we integrate the above regression

over various estimators of Pv(W ). The left panel of Figure 4.3 displays results under three different

estimates of Pv - including the HBB (with M = 100), BB, and the empirical distribution of W in each

stratum. While the estimates for Ψ(v) are largely similar across strata, note the HBB intervals are

typically slightly shorter. Similarly, the point estimates are typically higher in these strata. This may

partially reflect the trading off of increasing biased for reduced variability, as demonstrated in the

simulations. However, these simulation results were averages across many runs. In any single data

analysis, HBB need not produce narrower intervals.

Interpreting posterior estimates of Ψ(v) in Figure 4.3, we see that the proton and photon therapies’

effect on adverse event incidence are largely comparable across cancer type - with posterior dis-

tributions centered either near zero or very wide around 0 (as indicated by 95% credible intervals).

Of course, these causal interpretations are subject to the validity of the required identification as-

sumptions discussed earlier and in Web Appendix A. Moreover, these inferences are conditional on

the very rigid parametric assumptions. For instance, it assumes linear (on log-scale) and additive

covariate effects, in addition to a poisson outcome distribution. In the next section, we consider a
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nonparametric estimation via BART.

4.5.2. Nonparametric Inference for Causal Odds Ratio via BART

Here we illustrate how the HBB can be used in conjunction with a nonparametric model for a binary

outcome to obtain HTEs more robust to model misspecification. In this context let Y ∈ {0, 1} be a bi-

nary indicator of any adverse event over the 90-day followup period. Then, we specify a conditional

Bernoulli model for Y with regression E[Yi | Ai,Wi, V = v] = Φ
(
fv(Wi, Ai)

)
with prior fv ∼ BART

for v = 1, . . . ,K. This is the probit specification of BART outlined in Chipman, George, and McCul-

loch (2010). Above, Φ is the standard Normal distribution function and fv ∼ BART is shorthand

for the sum-of-trees model fv(Wi, Ai) =
∑J
j=1 g

v
j (Wi, Ai) with J trees, gvj . BART is characterized

by a prior on the structure of each tree, gvj , consisting of terminal node parameters, splitting rules,

and tree depth. Here we estimate stratum-specific models, with separate BART priors on each

function. Thus, for each stratum v, we can get posterior draws of fv under each treatment A = a.

In this case our target is the stratum-specific causal odds ratio Ψ(v) = E[Y 1|V=v]/(1−E[Y 1|V=v])
E[Y 0|V=v]/(1−E[Y 0|V=v]) .

Values of Ψ(v) less than one indicate lower risk of any adverse event due to proton therapy, rela-

tive to photon. Using standardization, we can compute each expectation by integrating Φ(fv(W,a))

over Pv(W ).The right panel of Figure 4.3 displays posterior results for Ψ(v) under three different

estimate of Pv - including the HBB (with M=100), BB, and the empirical distribution of W in each

stratum. We notice that while point and interval estimates are generally similar across strata, the

HBB intervals are somewhat narrower. However, according to these results, there is little posterior

evidence for a reduction of adverse event risk due to proton therapy. While point estimates of the

odds ratios are below one across strata, there is significant posterior uncertainty about the direction

and magnitude of these effects, as indicated by the wide 95% credible intervals mostly overlapping

one.

4.6. Discussion

The confounder distribution is a key unknown that must be estimated flexibly when making causal

inferences. It is still more important in the context of HTEs where some strata are too sparse to

allow reliable nonparametric estimation. In this paper we show that straightforward application of

the Bayesian bootstrap can be improved upon in these scenarios with the HBB. The proposed HBB

shares covariate information across strata to achieve more stable stratum-specific causal estimates.
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The approach is computationally tractable, compatible with arbitrary outcome models, and makes

no parametric assumptions about the distributions. As shown in the data analysis, it can be used

to compute a variety of marginal causal contrasts.

We emphasize that potential applications of the HBB go beyond estimation of stratum-specific

average causal effects. For instance, another popular causal estimand is the average treatment

effect on the treated (ATT). This is defined as the average difference in potential outcomes among

those assigned treatment. A Standardization-type procedure can be used here as well and requires

integrating a regression over the distribution of confounders among the treated, P (W | A = 1). If

there are too few treated subjects to get a reliable nonparametric estimate of this distribution, it may

be reasonable to borrow covariate information from untreated subjects, P (W | A = 0), by shrinking

towards the marginal via the HBB.

Lastly, our discussion of the connection between the HBB and the smoothed bootstrap motivates

an extension to a “smoothed HBB”. In Section 4.3.2, an HBB(0) prior on the mixing distribution

corresponds to a smoothed bootstrap within a stratum but prevents borrowing of information. We

could in principle set α > 0. In this case, the posterior becomes a hierarchical DP mixture of Kh -

thus borrowing information across strata while modeling the distribution as a smooth mixture. If, for

instance, Kh is a Gaussian kernel, we speculate the strength of the shrinkage could be informed by

the L − 2 distance in covariate values across strata. While such distance-based shrinkage would

be appealing, posterior computation for such a mixture model is much more involved - requiring

updating the kernel parameters - and requires good default choices of Kh. An advantage of the

HBB is that we require no specification of distance metric/kernel and maintain computational ease.

However, this extension would be interested to pursue in the future.
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CHAPTER 5

DISCUSSION AND CONCLUDING REMARKS

This dissertation developed (BNP) techniques for estimating causal effects in a variety of compli-

cated observational data settings. The common thread of these methods is the joint emphasis on

flexible estimation and uncertainty quantification. Nonparametric priors over the high-dimensional

models presented in this work allow us to model observed data objects with only very minimal

assumptions about the data generating mechanism. This greatly reduces the risk of bias due

to misspecification that is common in parametric modeling procedures. Simultaneously, the fully

Bayesian nature of our models allows for posterior uncertainty quantification over the models and

the causal estimates.

This joint emphasis on uncertainty and flexibility supplies BNP methods with some of the best

elements of classical statistics (typically concerned with the former) and machine learning (typically

concerned with the latter). In fact, many BNP methods can be thought of as leveraging a latent

probability model that underlies a given heuristic machine learning algorithm. This view has led to

developments such as Bayesian additive regression trees (BART), which is a probabilistic analogue

of regression tree-based algorithms. Similarly, the DP mixtures used in this dissertation can be

thought of as probabilistic analogues of “mixture-of-experts” models used in machine learning.

Other well-known methods in machine learning such as least absolute shrinkage and selection

operator (LASSO) and Ridge regression can be motivated as maximum a posteriori inference under

specific priors (double exponential in the first case and Gaussian for the latter).

Indeed, interest in BNP methods have seen a revival in computer science and machine learning un-

der the guise of “probabilistic machine learning.” While this term has many usages in the literature,

Ghahramani, 2015 describes it as “the probabilistic approach to modeling uses probability theory

to express all forms of uncertainty.” He writes that “probability distributions are used to represent all

the uncertain unobserved quantities in a model (including structural, parametric, and noise-related)

and how they relate to the data. Then the basic rules of probability theory [presumably, Bayes’

rule] are used to infer the unobserved quantities given the observed data.” Section 2 of that piece

discusses the role of nonparametric priors in detail. Similarly, Murphy, 2021 describes probabilistic
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machine learning as “..machine learning, but from a probabilistic perspective. Roughly speaking,

this means that we treat all unknown quantities ... as random variables, that are endowed with prob-

ability distributions...”. From a statistics perspective, we can recognize this exactly as the Bayesian

approach to inference, but with the added flexibility of nonparametric Bayes that go back to at least

Ferguson, 1973.

Separately, the causal inference literature has increasingly focused on flexible semiparametric es-

timation of target quantities and moved away from parametric modeling. Before these advances,

the approach was typically reversed: parametric models were fit to data and researchers tried to

back out estimates of causal parameters from those models. One issue with this approach is that if

the parametric model is incorrect, then estimators of the causal effects based on transformations of

the parameters would have little meaning. Modern causal inference techniques - such as the ones

employed in this dissertation - begin with the causal target of interest, identify them as a functional

of observed data objects, then model those objects with minimal assumptions about their struc-

ture. In our case, we leverage BNP models of these observed-data objects. While these models

have a high-dimensional parameter set that are difficult to interpret, the downstream causal effect

estimates they form have a concrete causal interpretation under clearly specified assumptions.

The rising interest of nonparametric Bayes in machine learning coupled with the emphasis on semi-

parametric estimation in causal inference inspires optimism about the future of Bayesian nonpara-

metric causal inference. These includes causal inference in dynamic treatment regime settings,

sensitivity analyses for violations of causal assumptions, and and instrumental variable methods in

the presence of unmeasured confounding - to list just a few.
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APPENDIX A

APPENDICES FOR CHAPTER 2

A.1. Derivation of Posterior Quantities

A.1.1. Conditional Posterior

The conditional posterior of ωi can be expressed up to a proportionality constant as

p(ωi|ω1:(i−1), D) ∝ p(D|ω1:i)p(ωi|ω1:(i−1))

∝ α

α+ i− 1
p(D|ω1:i)G0(ωi) +

1

α+ i− 1

∑
j<i

p(Dj |ωj)I(ωi = ωj)

∝ α

α+ i− 1
p(ωi|Di, G0)

∫
ωi

p(D|ω1:i)dG0(ωi)

+
1

α+ i− 1

∑
j<i

p(Dj |ωj)I(ωi = ωj)

(A.1)

The second line follows by substituting the Pólya Urn scheme for p(ωi|ω1:(i−1)). The last line follows

from the fact that p(ωi|Di, G0) = p(D|ω1:i)G0(ωi)∫
ωi
p(D|ω1:i)dG0(ωi)

.

A.1.2. Posterior Predictive Distribution

Causal inference using standardization is based on the posterior predictive mean of the outcome

under some intervention A = a. Denote this as ỹa. Letting tildes denote posterior predictive draws

throughout,

p(ỹa|D) =

∫
ω1:n

∫
l̃

∫
ω̃

p(ỹa|l̃, ω̃, ω1:n, D)p(l̃|ω̃, ω1:n, D)p(ω̃|ω1:n)p(ω1:n|D) dω̃ dL̃ dω1:n (A.2)

Conventionally, we assume that that ỹa ⊥ ω1:n, D|ω̃ and l̃ ⊥ ω1:n, D|ω̃. That is, conditional on

new parameter draws, the new outcome draw is independent of previous observations and their

parameters.

p(ỹa|D) =

∫
ω1:n

∫
l̃

∫
ω̃

p(ỹa|l̃, ω̃)p(l̃|ω̃)p(ω̃|ω1:n)p(ω1:n|D) dω̃ dL̃ dω1:n (A.3)

66



www.manaraa.com

Assuming ignorability and consistency hold,

p(ỹa|D) =

∫
ω1:n

∫
l̃

∫
ω̃

p(ỹ|A = a, l̃, ω̃)p(l̃|ω̃)p(ω̃|ω1:n)p(ω1:n|D) dω̃ dL̃ dω1:n (A.4)

Recall that ωi|ω1, . . . , ωi−1 from the Pólya Urn Blackwell and MacQueen, 1973

ωi|ω1:(i−1) ∼
α

α+ i− 1
G0(ωi) +

1

α+ i− 1

i−1∑
j=1

I(ωi = ωj)

Substituting i = n+ 1 yields

ω̃|ω1:n ∼
α

α+ n
G0(ω̃) +

1

α+ n

n∑
j=1

I(ω̃ = ωj)

Substituting this into Equation A.4 yields,

p(ỹa|D) =

∫
ω1:n

∫
l̃

∫
ω̃

p(ỹ|A = a, l̃, ω̃)p(l̃|ω̃)
[ α

α+ n
G0(ω̃) +

1

α+ n

n∑
j=1

I(ω̃ = ωj)
]
p(ω1:n|D) dω̃ dL̃ dω1:n

=

∫
ω1:n

∫
l̃

[ ∫
ω̃

p(ỹ|A = a, l̃, ω̃)p(l̃|ω̃)
α

α+ n
G0(ω̃)dω̃

+
1

α+ n

n∑
j=1

∫
ω̃

p(ỹ|A = a, l̃, ω̃)p(l̃|ω̃)I(ω̃ = ωj)dω̃
]
p(ω1:n|D) dL̃ dω1:n

=

∫
ω1:n

∫
l̃

[ α

α+ n

∫
ω̃

p(ỹ|A = a, l̃, ω̃)p(l̃|ω̃)G0(ω̃)dω̃

+
1

α+ n

n∑
j=1

p(ỹ|A = a, l̃, ωj)p(l̃|ωj)
]
p(ω1:n|D) dL̃ dω1:n

(A.5)

Integrating the above over y yields the posterior predictive mean

E(ỹa|D) =

∫
ω1:n

∫
l̃

[ α

α+ n

∫
ω̃

E(ỹ|A = a, l̃, ω̃)p(l̃|ω̃)G0(ω̃)dω̃

+
1

α+ n

n∑
j=1

E(ỹ|A = a, l̃, ωj)p(l̃|ωj)
]
p(ω1:n|D) dL̃ dω1:n

(A.6)

We can evaluate these integrals via Monte Carlo. Assume we have t = 1, . . . , T draws from the
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posterior ω(t)
1:n ∼ p(ω1:n|D). How to obtain these draws is the subject of Web Appendix B. For each

posterior draw, we propose a new set of parameters from the prior ω(t)
0 ∼ G0. We also take several

draws from p(l̃ | ω(t)
i )

A.1.3. Posterior Predictive Propensity Score

We can use the model to estimate the propensity score for each subject i using the posterior

predictive probability of treatment conditional on subject i’s covariates.

P (Ã|L̃ = l,D) =
p(Ã, l|D)

p(l|D)
=

∫
ω̃

∫
ω1:n

p(Ã, l, ω̃, ω1:n|D) dω̃ dω1:n∫
ω̃

∫
ω1:n

p(l, ω̃, ω1:n|D) dω̃ dω1:n

=

∫
ω̃

∫
ω1:n

p(Ã|l, ω̃)p(l|ω̃)p(ω̃|ω1:n)p(ω1:n|D) dω̃ dω1:n∫
ω̃

∫
ω1:n

p(l|ω̃)p(ω̃|ω1:n)p(ω1:n|D) dω̃ dω1:n

(A.7)

Again, substituting the Pólya Urn distribution,

P (Ã|l,D) =

∫
ω̃

∫
ω1:n

p(Ã|l, ω̃)p(l|ω̃)
[

α
α+nG0(ω̃) + 1

α+n

∑n
j=1 p(Ã|l, ω̃)p(l|ω̃)δωj (ω̃)

]
p(ω1:n|D) dω̃ dω1:n∫

ω̃

∫
ω1:n

p(l|ω̃)
[

α
α+nG0(ω̃) + 1

α+n

∑n
j=1 δωj (ω̃)

]
p(ω̃1:n|D) dω̃ dω1:n

=

∫
ω1:n

[
α

α+n

∫
ω̃
p(Ã|l, ω̃)p(l|ω̃)G0(ω̃) dω̃ + 1

α+n

∑n
j=1 p(Ã|l, ωj)p(l|ωj)

]
p(ω1:n|D) dω1:n∫

ω1:n

[
α

α+n

∫
ω̃
p(l|ω̃)G0(ω̃) dω̃ + 1

α+n

∑n
j=1 p(l|ωj)

]
p(ω̃1:n|D) dω1:n

(A.8)

Again, given T posterior draws ω(t)
1:n indexed by t, we can perform a Monte Carlo evaluation of the

integral

P (Ã = 1|l,D) ≈ 1

T

T∑
t=1

α
α+n

∫
ω̃
p(Ã = 1|l, ω̃)p(l|ω̃)G0(ω̃) dω̃ + 1

α+n

∑n
j=1 p(Ã = 1|l, ω(t)

j )p(l|ω(t)
j )

α
α+n

∫
ω̃
p(l|ω̃)G0(ω̃) dω̃ + 1

α+n

∑n
j=1 p(l|ω

(t)
j )

(A.9)
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A.2. Metropolis-in-Gibbs Sampler and Relabeling Strategy

We use a Metropolis-in-Gibbs sampler for posterior inference. First, introduce latent cluster indi-

cators for the n subjects at iteration t of the algorithm, c(t)1:n. Let K(t) be the set of unique cluster

labels at iteration t. In this iteration, each ci may take on one of K(t) unique values, indexed by k.

Associated kth cluster is a set of cluster specific parameters ω(t)
k = (γ

(t)
k , β

(t)
k , φ

(t)
k , η

(t)
k , θ

(t)
k ).

The MCMC procedure alternates between updating the cluster-specific parameters, ωk, conditional

on c1:n. Then updates c1:n conditional on ωk. The procedure is given in Algorithm 1.

Algorithm 1 Metropolis-in-Gibbs Posterior Sampler for Zero-inflated DP Mixture

1: Initialize c(0)
1:n to K(0) initial clusters with unique labels K(0).

2: Initialize parameters ω(0)
k for each of these clusters.

3: for t=1:T do

4: Update Cluster-specific Parameters

5: for k in K(t−1) do

6: β
(t)
k ∼ p(β|φ

(t−1)
k , D) ∝

∏
i|yi>0,ci=k

N(yi|x′iβ, φ
(t−1)
k ) ·G0(ω)

7: φ
(t)
k ∼ p(φ|β

(t)
k , D) ∝

∏
i|yi>0,ci=k

N(yi|x′iβ
(t)
k , φ) ·G0(ω)

8: θ
(t)
k ∼ p(θk|D) ∝

∏
i|ci=k p(li|θk) ·G0(ω)

9: η
(t)
k ∼ p(ηk|D) ∝

∏
i|ci=k Ber(Ai|expit(m

′ηk)) ·G0(ω)

10: γ
(t)
k ∼ p(γk|D) ∝

∏
i|ci=k Ber(zi|expit(x

′γk)) ·G0(ω)

11: Conditional on ω(t)
k for all k ∈ K(t−1), update c1:n

12: Propose a new cluster with parameters drawn from the base distribution, ωnew ∼ G0

13: for i=1:n do

Update to existing cluster...

14: P (ci = k|c−i, {ω(t)
k : ∀k ∈ K(t−1)}, D) ∝ p(Di|ω(t)

k ) ·
∑
j 6=i I(ci=cj)

α+n

...or to the newly proposed cluster.

15: P (ci 6= k,∀k ∈ K(t−1) | c−i, {ω(t)
k : ∀k ∈ K(t−1)}, D) ∝ p(Di|ωnew) · α

α+n

In practice we assume prior independence, so that G0 = p(β|µβ)p(φ|µφ)p(θ|µθ)p(η|µη)p(γ|µγ).

Here, the µ terms represent hyperparameters. In this setting, the prior distribution factors so that in

line 6, for example, G0(ω) ∝ p(β|µβ). Furthermore, we could choose p(β|µβ) to be a multivariate
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Gaussian with hyper mean vector and covariance matrix µβ = (λ,Σ). This allows us to performing

the sampling in line 6 using conjugacy. The idea is the same for the covariate model update in line

8 - where we could specify independent beta priors for binary variables, normal priors for contin-

uous covariates, and Dirichlet priors for categorical variables. More complicated distributions can

be chosen to better model correlations between the parameters at the expense of computational

complexity.

Since there are no conjugate priors for the logistic models, the updates in lines 9 and 10 are done

using a Metropolis step. We use a multivariate normal jumping distribution centered around η(t−1)
k

and γ
(t−1)
k , respectively. The cluster assignment update beginning in line 13 is the most time-

consuming part of the algorithm as it requires updating each subject one at a time. Nevertheless, it

is simple to implement with existing statistical software.

At each iteration of the sampler, clusters can die (become unoccupied). New clusters can also

appear. If the proposed cluster’s parameters in line 12 happens to fit a subject’s data better than

the existing clusters, then the probability in line 15 will dominate those in line 14.

We compute n× n adjacency matrix, M (t), for each posterior draw, t = 1, . . . , T . The (i, j)th entry,

M
(t)
ij = I(c

(t)
i = c

(t)
j ), of this matrix is an indicator for whether subject i was clustered with subject

j. Taking the element-wise mean of this matrix over Gibbs iterations, t, yields an n × n posterior

mode matrix, M∗ displaying the frequency with which subject i was clustered with subject j.

To obtain a hard classification status for each patient, we search for the M (t) that is closest to

the posterior mode matrix, M∗, in the L2 sense. That is, we search for the posterior M (t) that

yield the lowest
∑
i,j(M

(t)
ij −M∗ij)

2. This approach provides an unambiguous way of classifying

subjects according to the posterior mode in the presence of label switching. The clusters can then

be summarized in terms of their outcome and observed confounder distributions.

Moreover, we can view M∗ as a posterior adjacency matrix, represented as a network diagram

where each subject is represented by a node and the edge between subject i and j has length

given by M∗ij - the posterior probability of subject i and j being clustered together.

We alluded to the computational complexity of the algorithm earlier. In our data analysis, running

40,000 iterations (after 20,000 burn-in) with about 1,000 subjects and six covariates took about 3.3
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hours on a standard Windows 64-bit machine with 16GB of RAM, which we found to be reasonable.

In settings with larger sample sizes, several MCMC chains can be run in parallel. For example, four

chains that each take 10,000 draws after a 20,000 burn-in will yield a total of 40,000 draws in much

less time. If gains from parallelization is still insufficient, other algorithms for sampling from DP

posteriors exist that may potentially scale better with sample size. For example, the split-merge

algorithm (Jain and Neal, 2004) explores the posterior space of cluster assignments by proposing

splits and merges of existing clusters, instead of clustering one subject at a time.

Finally, we end with some guidance on choosing the initial number of clusters in the model. It is

advisable to conduct a few MCMC runs with different amounts of initial clusters and monitor some

posterior quantity of interest in each run. For example, we could choose to monitor marginal causal

effect chains for different numbers of starting clusters. The chains can be visually inspected to

make sure they mix well. A Gelman-Rubin R̂ statistic could be computed - with R̂ < 1.1 indicating

adequate mixing.

A.3. Causal Identification Assumptions

We can identify E
[
Y Ai=1
i − Y Ai=0

i

]
under these assumptions:

• Ignorability: Y Ai=ai ⊥ Ai = a|Li. Conditional on observed confounders, potential cost is

independent of treatment assignment. Unmeasured confounding, for example, would be a

violation of this assumption.

• Consistency: Y Ai=ai = Yi|Ai = a. That is, Yi observed under the actual treatment Ai = a

is equal to Y Ai=ai . Non-adherence to treatment assignment is an example of a violation of

consistency.

• No interference: Y Ai=ai ⊥ Aj , ∀i 6= j. one subject’s treatment assignment does not impact

another’s potential outcome. This assumption may not hold in vaccine studies, for example,

where one subject’s vaccination status may impact another subject’s infection status.

• Positivity: 0 < P (Ai = 1|Li) < 1. If P (Ai = 1|Li) = 1, then there would be some subpopula-

tion, in terms of L, for which we would not have any control subjects to compare against.
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A.4. Simulation Details

We simulate 1000 data sets of 3000 subjects each under two data generating processes: a clus-

tered setting and parametric setting. For the clustered setting, we simulate i ∈ 1, . . . , 3000 subjects

in the following way:

• Draw cluster indicators, ci with uniform probability P (ci = 1) = P (ci = 2) = P (ci = 3) = 1/3.

• Draw confounder vector Li ∼ P (Li|θci) = N(L1|µci , φci)
∏5
j=2Ber(Lj |pci). Where θci =

(µci , φci , pci) and the cluster-specific parameters are θ1 = (.9, .12, .25), θ2 = (0, .12, .5), and

θ3 = (.375, .12, .75).

• Draw treatment Ai|Li ∼ Ber(pci), where p1 = expit(.5 − 1L1 +
∑4
j=2 Lj), p2 = expit(.2 +

2L1 − 2
∑4
j=2 Lj), and p3 = expit(.8 + 1L1 −

∑4
j=2 Lj).

• Draw structural zero indicator, Zi|Ai, Li ∼ Ber(pzci), where pz1 = expit(−2 − 2Ai + L1 +∑4
j=2 Lj), pz2 = expit(−2+.5Ai−2L1+2

∑4
j=2 Lj), and pz3 = expit(2.5+1Ai−L1−

∑4
j=2 Lj).

• If Zi = 1, then set Yi = 0. Otherwise, draw Yi ∼ Gamma(shapeci , scaleci) where scale1 =

10000, scale2 = 20000, and scale3 = 30000. The shape parameters are shape1 = 4 + A +

2L1 +
∑4
j=2 Lj , shape2 = 5 +A− 5L1 +

∑4
j=2 Lj , and shape3 = 7 +A+ 1L1 +

∑4
j=2 Lj

For the parametric setting,

• Draw confounder vector Li ∼ P (Li|θ) = N(L1|µ, φ)
∏5
j=2Ber(Lj |p). Where θ = (µ, φ, p) =

(0, .12, .5).

• Draw treatment Ai|Li ∼ Ber(p), where p = expit(2 + 3L1 −
∑4
j=2 Lj).

• Draw structural zero indicator, Zi|Ai, Li ∼ Ber(pz), where pz = expit(−2 + .5Ai − 2L1 +∑4
j=2 Lj).

• If Zi = 1, then set Yi = 0. Otherwise, draw Yi ∼ Gamma(shape, scale) where scale = µ/1e9,

shape = µ2/1e9, and µ = 3e5 + 50000A− 100000L1 +
∑4
j=2 Lj .

We implement BART using the BayesTree package, the doubly robust estimator using the twang

package, and code the Gamma hurdle and Gamma +.01 models in Stan with improper, uniform
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priors for all parameters. All Bayesian results are based on 5000 posterior draws after 5000 burn-in

iteration.

In both DGPs, for the DP mixture model, we use the base distribution, G0, is the product of the

following priors:

• A Gaussian prior on L1 with mean equal to the empirical mean and variance equal to the

empirical variance scaled by 10. Independent Beta(1, 1) priors on L2:4.

• A Gaussian prior on the coefficient vector of the non-zero outcome model (β). The mean of

this prior is centered around coefficient estimates from a linear model estimated using non-

zero outcome values. The prior covariance matrix was set to be diagonal with variances equal

to variances from a linear model estimated using non-zero outcomes.

• An InvGamma(5, 10000) parameter is specified for the variance of the non-zero outcomes.

• The coefficient vectors of the logistic regression for both structural zeros and treatment were

assigned a Gaussian priors with a zero mean vector and variances set to 2. This is relatively

flat on the odds ratio scale.

• Both of the logistic regression parameter vectors were sampling using a Metropolis step with

a Gaussian jumping distributions with diagonal covariance matrices. The diagonal elements

were set to .05 for the treatment model and .005 for the structural zero model.

A.5. Data Analysis Details

We take 40,000 posterior draws after allowing for 20,000 burn-in. We initialize the sampler with

5 clusters. Normal priors on continuous covariate distributions. A Normal hyperprior is placed on

the mean of this prior with empirical means and standard deviations (scaled by 10 to be slightly

wider). Informative InvGam(10, 10) hyperprior placed on the variance. Beta(1, 1) priors are placed

on binary covariates distributions.

A Multivariate normal prior is placed on the outcome regression coefficients. The mean is set to

linear regression coefficient estimates using only subjects with positive costs. The prior covariance

was set to be diagonal with variance set to the diagonal of the previously mentioned regression’s
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covariance matrix. We scale these variances by 100 to make the prior a little wider. Treatment

model and zero-inflation model regresion parameters are also Gaussian, centered around zero

with variance of 2. Note that on an odds ratio scale this places most prior density on regression

odds ratios ranging from .014 to 70.

Multivariate normal jumping distributions with diagonal variances are used for the Metropolis steps

in both the treatment and zero-inflation models. The variance for the jumping distribution was set to

.025. Lastly, we choose to estimate the concentration parameter rather than setting it. We place an

InvGam(1, 1) prior on the parameter and implement a metropolis step using a Gaussian jumping

distribution with variance 1.

For standardization, we evaluated the necessary integrals with 30,000 Monte Carlo iterations per

posterior draw. The resulting MCMC chains are given

Figure A.1: Chains of 40,000 post-burn-in posterior draws of relevant quantities presented in the
data analysis section.
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Table A.1: Summary Statistics by Posterior Mode Cluster Assignment: Means are reported for
continuous variables. Percentages are reported for categorical variables. All monetary amounts
are in thousands of 2018 U.S. Dollars. Columns are ordered from lowest average cost to highest
average cost. Small clusters were omitted for compactness.

Red Green Blue Orange

(n=452) (n=160) (n=288) (n=127)

Total Inpatient Costs ($) 9.4 10.6 24 71.1

Radiation 91.8% 93.1% 89.9% 89.8%

Age (years) 72.4 73.2 73.9 74.9

Household Income ($) 74.6 69.9 68.4 64.5

White 90.5% 88.8% 82.6% 85.8%

Diabetic 0.0% 40% 38.2% 25%

CCI

0 100% 15.0% 23.6% 22.0%

1 0.0% 85.0% 35.1% 31.5%

2 0.0% 0.0% 29.5% 15.7%

≥ 3 0.0% 0.0% 11.7% 30.7%

Grade = 1 21.7% 25% 21.2% 26.8%

FIGO Stage I-N0 or I-A 40.3% 39.4% 38.9% 42.5%

A.6. Zero-Inflated DP Mixture with Log-Transformed Outcome

For applications with non-negative outcomes close to zero, a local Gaussian conditional outcome

distribution will likely yield negative predicted values. In these settings it may be desirable to have a

predictive distribution with non-negative support. In this section, we outline a simple modification to

our model to accommodate such scenarios. This involves log-transforming non-zero outcome val-

ues, then applying our model to the transformed data. This is equivalent to assuming a log-Normal

conditional distribution for non-zero outcomes, as opposed to a Normal distribution.

At the prediction step, we can exponentiate log-outcomes back to the original scale. Since we use a

fully Bayesian model, all inference is conducted using the posterior so that inference on the original
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scale is still probabilistically valid. Specifically, define a transformed outcome

Ẏi =


0 Yi = 0

log(Yi) Yi > 0

We can now use the proposed zero-inflated conditional outcome distribution with this transformed

outcome

Ẏi | Ai, Li, βi, γi, φi ∼ π (x′iγi) δ0 (ẏi) + (1− π (x′iγi)) ·N (ẏi | x′iβi, φi)

We will illustrate this with a toy simulation example. We simulate a zero-inflated outcome, Yi, with

a single covariate, Xi, and no treatment for n = 600 subjects. Subjects are generated from three

unobserved, latent clusters ci ∈ {1, 2, 3} in the following way

p(ci = k) =
1

3
, for k ∈ {1, 2, 3}

Xi ∼ N(µ(ci), σ(ci))

Zi|Xi ∼ Ber(expit(γ(ci)
0 + γ

(ci)
1 Xi))

Yi|Xi, Zi ∼


0 Zi = 1

logN(β
(ci)
0 + β

(ci)
0 Xi, τ

(ci)) Zi = 0

The true values are

• For ci = 1: β0 = 4, β1 = 1/10, γ0 = −.5, γ1 = −.5, µ = 10, τ = 1, σ = 3.

• For ci = 2: β0 = 5, β1 = 1/5, γ0 = −1, γ1 = .05, µ = 0, τ = 1, σ = 2.

• For ci = 3: β0 = 3, β1 = 1/10, γ0 = −2, γ1 = −.2, µ = −10, τ = 1, σ = 4.

We compute the transformed outcome Ẏi as defined above. Below is a figure of the data on both

the original and log scale. Notice the outcome values near zero ( Y < 500), the zero-inflation,

skew-ness, and multimodality - the pathological features our model aims to capture. We will show

that running our proposed model with the transformed outcome, Ẏ , will capture these complexities

on the original scale.
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Figure A.2: Simulated data on both original and log-scale.

We run our model with the transformed outcome, omitting the treatment model since in this toy

example we have no treatment.

Ẏi | Xi ∼ π(γ0i + γ1iXi)δ0(ẏi) + (1− π(γ0i + γ0iXi)N(ẏ | β0i + β1iXi, τi)

Xi ∼ N(xi|µi, σi)

ωi|G ∼ G

G|G0, α ∼ DP (αG0)

Above, ωi = (γ0i, γ1i, β0i, β1i, µi, σi, τi). We set G0 to be the product of the following prior distribu-

tions (subscript i omitted for clarity):

• 2-dimensional Gaussian distribution for (β0, β1) centered around OLS parameter estimates

using only positive outcomes. The prior covariance is the estimated covariance matrix from

this OLS regression.

• 2-dimensional Gaussian distribution for (γ0, γ1) centered around the zero-vector with a diag-
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onal covariance diag(1, 1).

• Gaussian distribution for µ centered around the sample mean X̄ with variance equal to sample

variance Sx = (n− 1)−1
∑
i(Xi − X̄)2

• InvGam(shape = 2, rate = Sx) prior for σ.

• InvGam(2, 1) prior for τ .

• Gamma(1, 1) prior on α.

We initialize the model with 5 clusters and retain 1000 posterior draws after a 2000 draw burn-

in. Below is a figure depicting clustering and prediction results. In column 1, shapes indicated

posterior mode cluster assignment on both the original and log scale. In column 2, the observed

data distribution is shown with the 2D-density contours. A single predictive outcome draw for each

subject is depicted with the points. Note that the predictive draws are distributed similarly to the

contours - indicating a good fit on both the log and original scales.
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Figure A.3: Prediction and clustering results on original and log scales.

Below is a QQ plot similar to the one presented in the manuscript.
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Figure A.4: Percentiles of predictive draws versus observed percentiles, on original scale.

This shows that the posterior predictions on the original scale of the data faithfully represent the

data used for training - indicating a good fit despite being trained on the log-scale.
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APPENDIX B

APPENDICES FOR CHAPTER 3

B.1. Identification of Causal Net Monetary Benefit

Recall that we are interested in estimating Ψ = E[MV 1,0] − E[MV 0,0], where the expectation

implicitly conditional on the parameters governing the joint cost-survival distribution. We can identify

each term of Ψ. Starting with an iterated expectation over L,

E[MV a,0] = EL[EY,D[MV a,0 | L, ω1:n, θ1:n, λ0]]

= EL[EY,D[MV a,0 |, A = a, δ = 0, L, ω1:n, θ1:n, λ0]]

= EL[EY,D[MV | A = a, δ = 0, L, ω1:n, θ1:n, λ0]]

=

∫
L
EY,D[MV | A = a, δ = 0, L, ω1:n, θ1:n, λ0]dP (L)

=

∫
L

∫
Y,D

(Dκ− Y )p(Y, T | A = a, L, δ = 0, ω1:n, θ1:n, λ0)dP (L)

Note above, Y and D are the spaces we integrate over. This last line is each term of Equation

(3.3). The second line follows from joint ignorability (IA.1), allowing us to condition on A = a, δ = 0

after first conditioning on L. The third line follows from joint consistency, IA.2, allowing us to drop

the superscripts on monetary value. These are extensions of the usual conditional ignorability and

consistency assumptions under censoring (Robins, Hernán, and Brumback, 2000) extended to

handle a bivariate cost-survival time outcome. The interference assumption, IA.4, allows us to write

MV a1:n,01:n = MV a,0. That is, each subject’s potential monetary value is independent of others’

treatments or censoring status. Said another we, we learn nothing about someone else’s potential

monetary value by learning another’s treatment assignment. Joint positivity, IA.3, is requires so

that we do not condition on a zero-probability event in the second equality. The expression above

identifies a causal estimand that is purely a function of unknown parameters. Thus a posterior

distribution over the parameters induces a posterior distribution over monetary value.
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B.2. Posterior Computation

Gamma Process Prior Specification

This appendix provides additional details for updating the baseline hazard model with a dependent

Gamma process prior (Nieto-Barajas and Walker, 2002). Much of this is a detailed overview of the

results established by Nieto-Barajas and others in their 2002 paper and outlined in documentation

of the BGPhazard R package. We provide an abbreviated presentation adapted to the context of

our joint model for the reader’s convenience.

Consider observing right-censored survival time data for i = 1, . . . , n subjects with survival time Ti

and death indicator δi. Consider a partition, {τv}v=1:V , of the time interval such that 0 < τ1 < τ2 <

· · · < τV where τV > maxi(Ti). In a setting with fixed study end, τ , we could set τV = τ . In this

case we consider equally-spaced interval such that ∆v = τv − τv−1 for all v. A piecewise constant

hazard model can be defined as

λ0(t) =

V∑
v=1

λ0vI(τv−1 < t ≤ τv)

If a priori the baseline hazard λ0(t) ∼ GP (bλ∗0, b, ξ = 0), then the hazard rate in each interval fol-

lows λ0v ∼ Gam(bλ∗0v, b), where the first argument in the shape and the second argument is the

rate. In the shape, we’ve defined λ∗0v = {Λ∗0(τv) − Λ∗0(τv−1)}/∆v, where Λ∗0 denotes the prior cu-

mulative hazard. Thus the prior mean hazard at each interval is E[λ0v] = λ∗0v. This is known as the

independent Gamma process prior because the hazard at each increment is independent a priori.

The dependent Gamma process of Nieto-Barajas extends this process to introduce dependence

between hazards in nearby increments - providing a smoother estimate that is less dependent on

choice of time partition. They do this by introducing latent processes {cv}1:V and {uv}1:V and is de-

noted with GP, as above, but with ξ > 0. The process is initialized with λ1 ∼ Gam(bλ∗01, b). Now for

v ∈ {1, 2, . . . τ−1}, we have uv | λv, cv ∼ Pois(cvλ0v) and λ0v+1 | uv, cv ∼ Gam(bλ∗0v+1 +uv, b+cv).

The conditional prior mean of this process is

E[λ0v | λ0v−1] =
bλ∗0v + cv−1λ

∗
0v−1

b+ cv−1

So the prior mean baseline hazard rate in current interval v is a weighted average of the prior
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baseline hazard rate, λ∗0v, in the current time interval and the prior baseline hazard rate in the

previous time interval, λ∗0v−1. This is the induced AR(1) smoothness of the dependent Gamma

Process. Following, Nieto-Barajas we place a hyperprior on {cv}1:V , assuming cv | ξ
iid∼ Exp(ξ).

Where the prior mean is E[cv] = ξ. The magnitude of ξ (relative to b) controls the aggressiveness

of the prior AR(1) shrinkage. if ξ >> b, then on average cv−1 >> b at all intervals v, meaning

that E[λ0v | λ0v−1] ≈ λ∗0v−1. Similarly, if ξ << b, then E[λ0v | λ0v−1] ≈ λ0v - i.e. almost no

shrinkage to the previous hazard. It can be shown above that setting ξ = 0 above reduces this to

the independent Gamma process.

Thus, the notation λ0 ∼ GP (bλ∗0, b, ξ) denotes this prior for the piecewise constant model λ0(t).

Specifically, the joint prior is

p(λ01:V , c1:V , u1:V | b, ξ) = p(λ1)p(u1 | λ01, c1)

V∏
v=2

p(uv | λv, cv)p(λ0v | uv−1, cv−1)

V∏
v=1

p(cv | ξ) (B.1)

With hyperparameters b, ξ, and λ∗0. Notational dependence on λ∗0 has been suppressed for com-

pactness. This can be combined with the likelihood for the observed data to obtain conditional

posteriors for each of the three parameter blocks, λ01:V , c1:V , and u1:V . We discuss likelihood

construction in the next section. b

Gamma Process Likelihood Construction

Now we consider the GP (bλ∗0, b, ξ) prior for the baseline hazard in a proportional hazard model

λ(t | Xi, θi) = λ0(t) exp
(
X ′iθi

)
, where λ0(t) =

∑V
v=1 λ0vI(τv−1 < t ≤ τv) . Specifically, our goal is

to find the posterior p({λ0v}1:V , {cv}1:V , {uv}1:V | D), where D indicates the observed data.

For convenience in presentation, define ηi = X ′iθi. Also note that under the piece-wise constant

model, the cumulative hazard is Λi(t) =
∫ t

0
λ0(s)eηids =

∑V
v=1 λ0ve

ηi∆v(t). Here, ∆v(t) = (t −

τv−1)I(t ∈ (τv−1, τv]) + ∆vI(t > τv).

Conditional on θi, standard survival likelihood construction with right-censored data yields

p(Ti | Xi, θi, δi, λ01:V ) =
∏
i|δi=1

f(Ti | Xi, θi)
∏
i|δi=1

S(Ti | Xi, θi)

Subjects with an event contribute to the likelihood via the density, f , and censored subjects con-

tributed via the survival function S, both of which can be expressed in terms of the hazard. Denote
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λ0vi as the hazard rate of the increment in which subject i died. The density evaluated at subject

i’s death time is,

f(Ti | Xi, ηi) = λ0(Ti)e
−Λi(Ti) = λvie

ηi exp
{
−

V∑
v=1

λ0ve
ηi∆v(Ti)

}
(B.2)

The survival function in terms fo the hazard is,

S(Ti | Xi, θi) = exp
{
− Λi(Ti)

}
= exp

{
−

V∑
v=1

λ0ve
ηi∆v(Ti)

}

So the full likelihood is

p(Ti | Xi, θi, δi, λ01:V ) =
( ∏
i|δi=1

λ0vi

)
exp

{ ∑
i|δi=1

ηi

}
exp

{
−

V∑
v=1

λ0v

( n∑
i=1

eηi∆v(Ti)
)}

(B.3)

Gamma Process Posterior Updates

The likelihood (B.3) can be combined with the joint prior (B.1) to obtain the following conditional

posteriors distributions for u1:V , c1:V , and λ01:V . Note all of these distributions are also conditional

on data, D. First, the conditional posterior distribution of {cv}1:V is

p(cv | uv, λov+1, λ0v) ∝


cuvv exp

{
− (λ0v + λ0v+1 + 1

ξ )cv

}
(b+ cv)

λ∗0v+1+uv v = 1, . . . , V − 1

Gam(uv + 1, λ0v + 1
ξ ) v = V

(B.4)

For v = 1, . . . , V − 1 this update is not conjugate. We sample each cv separately using Adap-

tive Metropolis-Hastings with separate proposal variances for each cv. The proposal variances

are tuned every few iterations in the burn-in period to target a 23.4% acceptance rate, which has

been shown to be optimal in around 10-dimensional sampling problems (roberts2001). The latent

process {uv}1:V can be updated from the following conditional posterior,

p(uv | cv, λ0v+1, λ0v) ∝


[
cvλ0vλ0v+1(b+cv)

]uv
Γ(uv+1)Γ(λ∗0v+1+uv) v = 1, . . . , V − 1

Pois(cvλ0v) v = V

(B.5)
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Note here uv is integer-valued and non-conjugate for v = 1, . . . , V − 1. To sample from these

conditional posteriors, we use grid sampling with a large grid of points {0, . . . , 10000}. Finally, the

conditional posteriors of the hazard rate in each interval is given by

p(λ0v | −, D) =


Gam

(
d1 + u1 + λ∗01, c1 + b+

∑n
i=1 e

ηi∆1(Ti)
)

v = 1

Gam
(
dv + uv + uv−1 + λ∗0v, b+ cv + cv−1 +

∑n
i=1 e

ηi∆v(Ti)
)

v = 2, . . . , V

(B.6)

Above, dv is the number of deaths in interval v. Note that the conditional distribution is fully conju-

gate for all v and can be sampled directly. Note also that this update is the only Gamma Process

update that involves data. The processes u1:V and c1:V are latent and the updates do not involve

data - but they do induce a dependence between the λ0v, which now must be updated sequentially

and in order.

Concentration Parameters

The two concentration parameters of the EDP, αθ and αω, are given Gam(1, 1) priors. We follow

the implementation in Roy et al., 2018. Details can be found in the supplement to their 2018 paper.

Monte Carlo Integration for Monetary Value

The expectation can be expressed as

µ(a, 0) = κE[D | −]−
∫ τ

0

∫ ∞
0

E[Y | D,−]p(D | −)dY dD

Note we use “−” to denote the conditioning set, which was made explicit in the main body of the

paper.

• The first term, E[D | −], (average death time within 2-years under treatment a) can be com-

puted in closed form. Since we partition time interval (see Appendix B.2) into K intervals, the

probability of dying in interval k is p(t ∈ [τk, τk + 1] | −). Within each interval, death time is
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uniform - so mean is τk+1+τk
2 .

E[D | −] ≈
K∑
k=1

τk+1 + τk
2

· p(t ∈ [τk, τk + 1] | −)

At every iteration, p(t ∈ [τk, τk + 1] | −) is given by substituting the parameter draws in this

iteration into Equation (B.2).

• Second term: For each subject, draw death interval proportional to p(t ∈ [τk, τk + 1] | −).

Then, within each interval draw a death time t∗ uniformly within that interval. Compute E[Y |

T = t∗,−] using this drawn value and the parameter draws in the current iteration.

B.3. Simulation Details

Data Generation

In the log-normal setting, we simulate data as follows. For subject i = 1, . . . , N ,

• Simulate latent cluster membership: ci ∼ Ber(pc), a 5-dimensional confounder Li. This

vector contains one continuous confounder drawn from a standard Normal distribution in the

first entry and four binary confounders draw from Bernoulli distribution with probability .5.

• Simulate treatment:

Ai ∼ Ber(expit(0 + (.1, .5,−.5, .5,−5)′Li))

• Simulate survival time, Ti: from a Weibull distribution (using the proportional hazard parame-

terization) with shape 10 and scale exp(ηi). Where

ηi = ci · [(0, .1,−.1, .1,−.1)′Li] + (1− ci) · [(1,−.1, .1,−.1, .1)]) + (−3 + 2ci)Ai

Notice that the treatment effect on survival is bimodal, along with the covariate effects.

• Simulate a covariate-dependent censoring time: Ci, from the same Weibull as above.

• Simulate Observed time observed time: Draw Zi ∼ Unif(0, 1) and simulate censoring indi-

cator δ̄i = I(Ci < Di) · I(Zi < pδ). If δ̄i = 1, then Ti = min(Ci, Di).
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• Simulate accumulated cost up to Ti:

Yi ∼ logN
(
mean = µi, sd = .05

)

where

µi = 2ci + (.1, .2, .2, .2, .2)′Li − 2Ti + .3Ai

Here we have a bimodal cost distribution (different means depending on ci) but homogeneous

treatment effect on costs.

• Output observed data Di = (Yi, Ti, δi = 1− δ̄i, Li, Ai).

In the Normal setting, we simulate data as above with the following modifications:

• Simulate survival and censoring times time with log scale parameter

ηi = ci · [(−1, .1,−.1, .1,−.1)′Li] + (1− ci) · [(1,−.1, .1,−.1, .1)]) + 2ci ·Ai

Note again that treatment and covaraite effects are bimodal (dependent on ci).

• Simulate outcome data from a Normal distribution with standard deviation .5 and mean

µi = 5 + 5ci + (.1, .5, .5, .5, .5)′Li − 3Ai + Ti

• Here the treatment and covariate effects on Y are homogeneous.

We simulate each dataset with N = 1500. In the bimodal setting, pc = .5. In the parametric

setting, the pc = 0 - so all subjects are from the same cluster. We set pδ = .4 in the high setting

to target 20% censoring and pδ = .1 in the low setting to target 5% censoring. For each setting

Normal/log-Normal -pδ-pc combination, we simulate 200 such datasets.

EDP-GP Prior Settings

First we discuss the settings for the log-Normal data generating mechanism. For the Gamma

Process prior, we partition the interval from [0,max(Ti)] into equal size increments of .1. We set

ξ = 1e− 6 to be quite small (very flat) to allow the likelihood to drive the posterior estimate. We set
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b = ξ thus inducing an AR1 dependence between increments that is as informative as the shrinkage

towards λ∗0, which we set to an exponential hazard with rate 400 - close to the average empirical

hazard rate across time points. Notice the actual baseline hazard is generated from a Weibull, so

our prior is deliberately misspecified as it likely would be in practice.

The prior on θi, G0θ is set to a multivariate Gaussian with zero mean vector and diagonal covariance

32I6. Where I6 is the 6× 6 identity matrix, where 6 is the number of covariates (5 confounders and

one treatment indicator). This is flat on the hazard ratio scale.

Since we fit a Gaussian conditional model for Y , the priorG0ω is a product of a prior on the covariate

effects and prior on the variance. Regarding the former, we again use a multivariate Gaussian with

zero mean vector and covariance 32I7, where the identity matrix has a diagonal entry for the five

confounders, treatment indicator, and observed time. This is fairly flat relative to the true conditional

outcome variance (on log scale) of .052. The prior for the variance is set to an inverse gamma

distribution. In the bi-modal setting we set this distribution to have shape and scale equal to 20.

This centers the prior variance around 1. In the parametric/unimodal setting we use a slightly

tighter prior around 1 - with shape and rate equal to 100. These tighter settings like 20 and 100

help regularize the Gaussian model we fit to the skewed Y data.

For the Normal data generating mechanism much of the settings above is the same. We only

change the shape parameter of the inverse gamma distribution on the conditional cost variance to

be 5 with a rate of 20. This is a fairly flat prior.

For each data set, we run the MCMC sampler for 7000 iterations and discard the first 2000 as

burn-in. This yields 5,000 posterior draws which we use for inference about NMB. In all settings, we

initialize the model with three ω clusters, each having three θ sub-clusters. This initialization is very

different from the true data generating mechanism that either generates data from a single ω − θ

cluster and two ω (top-level) clusters.

Since we fit a Gaussian model, each cluster’s conditional ω posterior is conjugate with our Normal-

Inverse-Gamma prior. This is a simple update. For the θ cluster parameters we use a Metropolis

update with Gaussian jumping distribution. The jumping covariance is identity with .1 along the

diagonals. Similarly, we use a Metropolis step to update {c1:v}1:V (see Appendix B.2) at each step.

Each cv is updated from an independent Gaussian jumping distribution with variance .5. We adapt
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both of these jumping distribution variances every 25 iterations starting from iteration 50 and ending

at iteration 200 to target an acceptance rate of 23.4% per roberts2001

Doubly-Robust Implementation

Here we describe the doubly-robust NMB estimator of Li et al., 2018 implemented in our simula-

tions. The cost and survival time models are estimated using super learner with regression trees,

generalized additive models, generalized linear models, and GLM-Net included in the ensemble.

We use a correctly specified logistic regression for the treatment model. This is quite generous

since doubly-robust estimators are guaranteed to be consistent with a correctly specified treatment

model (though the convergence rate can be quite slow if the outcome model is very misspecified.).

Since we have covariate dependent censoring, we estimate the inverse censoring weights using

a discrete-time failure model as described in Section 3.1.1 of their paper. To summarize, these

weights are computed using estimates of the probability of censoring at each time point, conditional

on not having been censored before that time point. This is estimated using a logistic regression of

a censoring indicator at each time point on simulated confounders, treatment and time-level fixed

effects. Intervals are computed using a 95% BCa interval after 1502 bootstrap iterations (BCa

intervals require more bootstrap iterations than observations in the sample).

B.4. Data Analysis Details

We partition the interval from [0, 24] into increments of .5. To sample from conditional posterior of

{cv}1:V (as mentioned Appendix B.2) we use a Metropolis-Hastings update from jumping variance

of .5. To sample from the posterior of θ (the covariate effects of the hazard model) we use a

joint Metropolis-Hastings update with an initial identity covariance matrix multiplied by .1 along

the diagonal. For both samplers, we adapt these jumping variances every 25 iterations starting

from iteration 50 to iteration 200. Every 25th iteration we use the previous 25 draws to target an

acceptance rate of 23.4%, as per roberts2001 Since we assume a log-normal cost distribution,

posterior updates are conjugate using log-transformed cost. Figure B.1 contains some diagnostic

plots with a discussion in the caption. These plots show the MCMC chains to be well-mixed and

model fit to be adequate. The total run-time was approximately 50 hours when parallelizing the

three chains.
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Figure B.1: Diagnostic plots supporting data analysis results. Top row: traceplots of three MCMC
chains of posterior NMB draws (left) and distribution of the combined posterior NMB draws of all
chains (right). These NMB draws are based on κ = $50, 000/12. All three chains mix after starting
with different initial clusters and seeds. Corresponding posterior is unimodal and peaked around
$14, 500. Panel C shows the traceplots of three MCMC chains for DSI, which mix well. Finally,
panel D shows a kernel density estimate of the joint observed time and cost distribution. In blue
we show a single set of posterior predictive draws of joint cost and observed time. This shows
adequate model fit: the posterior predictive is placing mass around the observed data. Moreover,
the posterior predictive allows for occasional large cost draws. This indicates the local log-Normal
cost distribution is able to capture skewness. If, for instance, the posterior predictive draws did not
overlap with the observed data, we would be suspicious of the model fit.
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For the doubly-robust (DR-SL) implementation of Li et al., 2018, we estimate the propensity score

model, cost model, and survival model using super learner with regression trees, GLM, and GLMnet

as candidates. Inverse censoring probability weights were estimated using a discrete-time failure

model described in Section 3.1.1 Li et al., 2018. This is a logistic model that predicts the probability

of censoring at each time point, conditional on not having been censored before that time point.

The discretization is at the monthly level, thus there are 24 intervals in which one can be censored

over τ = 24 months. The resulting model is used to predict the probability being censored at

the observed time, for each subject. The inverse of this probability is the weight used in the DR

approach. We include all Age, Household income, Charlson Index, and FIGO stage as covariates

in each model. Due to small cell counts, we combined FIGO stage II and II-NOS into a single

category. In the discrete-time failure model, we include a fixed effect for each month, 1-24. Due

to sparsity, we included month as a continuous covariate rather than categorical in this model.

In Figure B.2, displays NMB estimates from this DR-SL model in gray, along with the EDP-GP

estimates for reference. Note the larger uncertainty in the DR-SL model.
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Figure B.2: NMB mean and 95% bootstrap intervals for various willingness to pay from the DR-SL
model in gray. The EDP-GP estimates from Figure 3.3 are shown in blue for reference.
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APPENDIX C

APPENDICES FOR CHAPTER 4

C.1. Identification of HTE

Here we identify the HTE in the point-treatment setting discussed in the paper. Recall the HTE is

the average treatment effect within stratum v, Ψ(v) = E[Y 1 | V = v]− E[Y 0 | V = v]. Consider the

term E[Y a | V = v] and now iterate expectation over W :

E[Y a | V = v] =

∫
W
E[Y a |W,V = v]dPv(W )

Now we assume conditional ignorability. Specifically that within stratum v, once we condition on

confounders W , treatment assignment is independent of potential outcome, Y a ⊥ A | W,V = v.

This implies that E[Y a |W,V = v] = E[Y a | A = a,W, V = v],

E[Y a | V = v] =

∫
W
E[Y a | A = a,W, V = v]dPv(W )

Now, we assume consistency. That is, the outcome actually observed under treatment assignment

A = a actually equals the outcome that would occur under treatment A = a, i.e. Y a = Y . This

would be violated if, for instance, there is non-adherence to treatment assignment. This yields,

E[Y a | V = v] =

∫
W
E[Y | A = a,W, V = v]dPv(W )

So we have identified each term of Ψ(v) as a regression averaged over Pv(W ) = P (W | V = v).

Note that we implicitly make a positivity and non-adherence assumption. By conditioning on A = a

within W and V , we are assuming that treatment probability is bounded 0 < P (A = 1 | W,V =

v) < 1 or else we would be conditioning on a zero-probability even. This is also known as “overlap”.

Causally, it would suggest that there is some level and W within stratum V where we only observed

patients assigned to one of the two treatments. We cannot estimate a causal effect in this region of

the data without (likely incorrect) extrapolation. Moreover, for a particular sample we have assumed

that each subjects potential outcome Y aii is unaffected by others’ treatment assignment. If subject

j’s treatment assignment impacts subject i’s potential outcome, then we would have had to index
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the potential outcome with this treatment as well, Y ai,aji .

C.1.1. Posterior Derivations

Here we provide a derivation of the posterior distribution of each Pv using Dirichlet Distributions - the

finite-dimensional analogue of the Dirichlet Process. This is to supplement the conjugacy results

used in the main text. Suppose our model for the conditional covariate distribution, Pv(W ) = P (W |

V = v), is

Pv(W | πv) =

n∑
i=1

πvi · δWi
(W )

We have K such distributions for each of the K levels of V . Consider the Dirichlet prior on each

πv = (πv1 , π
v
2 , . . . , π

v
n) conditional on the π = (π1, π2, . . . , πn) and α mentioned in the text,

πv | π, α ∼ Dir(απ)

Note, we could do everything in terms of v-specific concentration parameters, but use a common α

for compactness. Now place Dirichlet hyperprior on π:

π | γ ∼ Dir(γ1n)

Note that the HBB corresponds to setting γ = 0 and that α is user-specified but we will leave γ as

it is for now. So the joint posterior is

p(π1, π2, . . . πK , π | α, γ,W, V ) ∝
{ K∏
v=1

Γ(
∑n
i=1 απi)∏n

i=1 Γ(απi)

n∏
i=1

(πvi )απi+δv(Vi)−1
}
p(π | γ) (C.1)

The objective is to sample the πv. To do this, we sample from the joint and simply ignore draws of

π. Note that the joint can be expressed as a marginal posterior for π and independent conditional

posteriors for πv

p(π1, π2, . . . πK , π | α, γ,W, V ) = {
K∏
v=1

p(πv | π, α, γ,W, V )}p(π | α, γ,W, V )

Thus to sample from the joint, we first sample π from the marginal posterior. Then conditional on π,

we can sample the πv independently. These are exactly Step 1 and 2, respectively, in the algorithm
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of Section 4.3.1. We now derive this marginal posterior and then turn to the conditional posteriors

of πv. To get the marginal, integrate out each of the πv in (C.1)

p(π | α, γ,W, V ) ∝
{ K∏
v=1

∫
Πv

Γ(
∑n
i=1 απi)∏n

i=1 Γ(απi)

n∏
i=1

(πvi )απi+δv(Vi)−1dπv
}
p(π | γ)

∝
{ K∏
v=1

Γ(α)∏n
i=1 Γ(απi)

∏n
i∈Sv Γ(απi + 1)

∏n
i/∈Sv Γ(απi)

Γ(α+ nv)

}
p(π | γ)

Above, Πv is the n-dimensional simplex we integrate over. This result follows because the integral

is over the kernel of a Dirichlet distribution, with concentration parameter vector απi + δv(Vi) and

recognizing that
∑n
i=1 απi = α since πi sum to 1. Continuing the derivation, we cancel like terms

from the numerator and denominators and note that Γ(απi+1) = απiΓ(απi). Therefore, Γ(απi+1)
Γ(απi)

=

απi and we have

p(π | α, γ,W, V ) ∝
{ K∏
v=1

Γ(α)αnv

Γ(α+ nv)

}
(

n∏
i=1

πi)p(π | γ)

Now, note that in the last line the term in brackets is constant with respect to π, so we can eliminate

it and maintain proportionality. Then, substituting the prior p(π | γ = 0) = Dir(0n) ∝
∏n
i=1 π

−1
i ,

p(π | α, γ,W, V ) ∝ (

n∏
i=1

πi)

n∏
i=1

π−1
i ∝

n∏
i=1

π1−1
i

This is the kernel of Dir(1n) - the posterior of Rubin’s bootstrap. Thus, to draw from this marginal

posterior, we can draw π ∼ Dir(1n). This is the distribution we sample from in Step 1 of the

algorithm in Section 4.3.1.

Now, the conditional posterior of each πv conditional on π is much simpler. Just absorb all terms

not involving πvi in (C.1) into the proportionality constant and we have

p(πv | π, α, γ,W, V ) ∝
n∏
i=1

(πvi )απi+δv(Vi)−1

Which is proportional to a πv ∼ Dir
(
απ1 + δv(V1), απ2 + δv(V2), . . . , απn + δv(Vn)

)
. This is the

distribution we sample from in Step 2 of the algorithm in Section 4.3.1.
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C.1.2. Simulation Details

Here we provide details for the simulation study in Section 4.4. In each setting, we simulate 1000

data sets with n = 300 subjects as follows. For i = 1, . . . , 300

1. Simulate stratum allocation:

Vi ∼Multinom(1;
4

10
,

3

10
,

2

10
,

1

10
)

The parameter vectors gives the probability of assignment to stratum 1, 2, 3, and 4, respec-

tively.

2. Simulate 10-dimensional confounder vector Wi = (W p
i )p=1:10 ,

Wi | Vi = v ∼ p(W | V = v)

The form of p(W | V = v) varies with simulation setting and is specified below.

3. Simulate treatment assignment, Ai, from Bernoulli with probability

P (A = 1 |Wi, Vi = v) = expit(ηv +W ′iβ)

4. Simulate binary outcome, Yi, from a Bernoulli with probability

P (Y = 1 |Wi, Vi = v) = expit(−1 + γv +W ′iθ + αvAi)

Note in the above that Wi impacts both treatment assignment (via β) and outcome (via θ) - so it is

a confounder. Similarly, Vi impacts both treatment assignment (via ηv) and outcome (via γv). Note

that the conditional treatment effect, αv, varies across stratum - so this is a complex scenario with

treatment effect heterogeneity across strata. This yields a simulated data set {Yi, Ai,Wi, Vi}i=1:n.

We simulate 1000 such data sets across four settings.

The covariate distribution p(W | V ) has a different family governed by different parameters in each

of the four settings, 1− 4:
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1. W p
i ∼ N(0, 1) for all V = v.

2. W p
i | V = v ∼ N(µv, 1) where µv ∈ {−2, 0, 2, 4} for v = 1, . . . 4, respecting order. Marginal of

V , the distribution of W is a location mixture of normals.

3. W p
i | V = v ∼ Ber(pv) where pv ∈ {.8, .6, .4, .2} for v = 1, . . . 4, respecting order.

4. W p
i | V = v ∼ Gam(shape = 1

2τv, rate = 1
2 ). Here τv ∈ {8, 6, 4, 1} for v = 1, . . . 4, respecting

order.

All settings share these simulation parameters:

• Set β = θ = (1,−1, 1,−1, 1,−1, 1,−1, 1,−1).

• Set ηv ∈ (0,−.5, .5, .5) for v = 1, . . . , 4 in order.

• γv ∈ (−.1,−.5, .1, .5) for v = 1, . . . , 4 in order.

• αv ∈ (1,−1.5, 1, 1.5) for v = 1, . . . , 4 in order.

Using each simulated dataset, we specify the following logistic regression

P (Y | A,W, V = v) = expit
(
ω0 + ωv +W ′ωW + ω∗vA

)

Normal priors with mean zero and standard deviation 3 were placed on each parameter. We obtain

M = 5000 posterior samples {ω0, ω
(m)
1 , . . . , ω

(m)
4 , ω

(m)
W , ω

∗(m)
1 , . . . , ω

∗(m)
4 }m=1:M after discarding the

first 5000 draws as burn-in. Sampling was done via Hamiltonian Monte Carlo as implemented in

Stan. These samples were combined with HBB as described in Section 4.3.1.

C.1.3. Data Analysis Details

Here we provide additional details about the data analysis in the main text. In the parametric

Poisson model, we include the following covariates for each stratum except gynecological cancer.

• treatment: binary with one indicating proton.

• race: categorical with levels white, black, and other.

97



www.manaraa.com

• sex: binary with one indicating male.

• insurance: categorical with levels medicare, private, and other.

• body-mass index: normalized.

• age: normalized

• charlson index: logged.

For gynecological cancer, there is no need to adjust for sex. We specifyN(0, 1) priors on all covari-

ates except in the following instances: in the models for E/G, brain, anal, and rectum, we use tighter

N(0, .1) priors on the other race coefficient. Similarly, for the P/D/H model we use a N(0, .1) prior

on other insurance. The tight priors are to regularize coefficients that explode due too little varia-

tion in insurance status or race in a particular stratum. Non-bayesian analyses typically omit such

variables (equivalent to a prior that the coefficient is exactly 0), but we choose to include them with

a tight prior around 0 as a compromise. Note that the N(0, 1) prior may seem overly informative,

but on the log scale it is quite flat. It puts sufficient volume at incident rate ratios within exp(±1.96)

or within (.14, 7.1).

For posterior sampling, we use hamiltonian monte carlo as implemented in Stan. We call Stan in

R using the rstan package. For inference, we retain 10000 posterior draws after a 10000 burn-in.

After obtaining these draws, we use HBB as described in Section 4.3.1.

For the BART model, we adjust for all of the same covariates. Draws of fv under particular treat-

ments were obtained using the BayesTree R package. We retain 1000 posterior draws for infer-

ence after discarding the first 1000 as burn-in. For the BART hyperpriors, we increase the power

parameter from the default of 2 to 3. This is to favors more shallow trees which provides more

regularization. After draws of fv are obtained, we combine with HBB draws as described in Section

4.3.1.

Finally, we note that the effects in the gynecological cancer model, in particular, is highly variable.

As there were only 4 subjects treated with proton therapy in this stratum and none of the four had

events, this coefficient is not identifiable with data. This is manifest in the large interval in both the

Poisson and BART models.
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